Search results for "Skeleton"
showing 10 items of 418 documents
Age-related trends of lesser pelvic architecture in females and males: a computed tomography pelvimetry study
2017
The pelvis and the spine form a system balancing human skeleton. Within this system, the pelvis adapts to age-related changes in the spine. Previous studies were predominantly focused on changes of pelvic parameters in the sagittal plane. The aim of this study was to reveal age-related changes of lesser pelvic dimensions at different levels of the pelvic cavity in the sagittal and coronal planes and to explore sexual dimorphism in age-related tendencies. The computed tomography pelvimetry was performed on the three-dimensional workstation. The research sample included 211 females aged 18 to 84 years and 181 males aged 18 to 82 years, who underwent an examination at the Riga East University …
Childhood growth predicts higher bone mass and greater bone area in early old age: findings among a subgroup of women from the Helsinki Birth Cohort …
2017
Abstract Summary: We examined the associations between childhood growth and bone properties among women at early old age. Early growth in height predicted greater bone area and higher bone mineral mass. However, information on growth did not improve prediction of bone properties beyond that predicted by body size at early old age. Introduction: We examined the associations between body size at birth and childhood growth with bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) in early old age. Methods: A subgroup of women (n = 178, mean 60.4 years) from the Helsinki Birth Cohort Study, born 1934–1944, participated in dual-energy X-ray absorptiometry (DXA) measuremen…
Can the microRNA expression profile help to identify novel targets for zoledronic acid in breast cancer?
2016
// Daniele Fanale 1, * , Valeria Amodeo 1, * , Viviana Bazan 1, * , Lavinia Insalaco 1 , Lorena Incorvaia 1 , Nadia Barraco 1 , Marta Castiglia 1 , Sergio Rizzo 1 , Daniele Santini 2 , Antonio Giordano 3 , Sergio Castorina 4, 5, # , Antonio Russo 1, # 1 Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy 2 University Campus Bio-Medico, Department of Medical Oncology, Rome, Italy 3 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA 4 Fondazione Mediterranea “G.B. Morgagni”, Catania, Italy 5 Department of Biomedic…
Production of Injectable Marine Collagen-Based Hydrogel for the Maintenance of Differentiated Chondrocytes in Tissue Engineering Applications
2020
Cartilage is an avascular tissue with limited ability of self-repair. The use of autologous chondrocyte transplants represent an effective strategy for cell regeneration
Organic matrices in metazoan calcium carbonate skeletons: composition, functions, evolution.
2016
9 pages; International audience; Calcium carbonate skeletal tissues in metazoans comprise a small quantity of occluded organic macromolecules, mostly proteins and polysaccharides that constitute the skeletal matrix. Because its functions in modulating the biomineralization process are well known, the skeletal matrix has been extensively studied, successively via classical biochemical approaches, via molecular biology and, in recent years, via transcriptomics and proteomics. The optimistic view that the deposition of calcium carbonate minerals requires a limited number of macromolecules has been challenged, in the last decade, by high-throughput approaches. Such approaches have made possible…
Microenvironments to study migration and somal translocation in cortical neurons
2018
Migrating post-mitotic neurons of the developing cerebral cortex undergo terminal somal translocation (ST) when they reach their final destination in the cortical plate. This process is crucial for proper cortical layering and its perturbation can lead to brain dysfunction. Here we present a reductionist biomaterials platform that faithfully supports and controls the distinct phases of terminal ST in vitro. We developed microenvironments with different adhesive molecules to support neuronal attachment, neurite extension, and migration in distinct manners. Efficient ST occurred when the leading process of migratory neurons crossed from low-to high-adhesive areas on a substrate, promoting spr…
Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion.
2016
The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding I…
Microtubule disruption changes endothelial cell mechanics and adhesion
2019
AbstractThe interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 3…
The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration
2017
The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing either human FOXP2 cDNA or its orthologues from the common chimpanzee, Rhesus monkey, and marmoset, respectively. Subsequent RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. Importantly, RT-qPCR and Western blotting indicated differential re…
Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.
2015
Abstract Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous…