Search results for "SoMe"

showing 10 items of 5114 documents

Editorial for Special Issue “Bioactive Oxadiazoles”

2021

Oxadiazoles are electron-poor, five-membered aromatic heterocycles containing one oxygen and two nitrogen atoms [...]

0301 basic medicineAnti-Inflammatory AgentsCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciences0302 clinical medicineIsomerismCoordination ComplexesOrganic chemistryCyclooxygenase InhibitorsPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologySpectroscopyOxadiazolesChemistryOrganic ChemistryGeneral MedicineComputer Science ApplicationsEditorialn/a030104 developmental biologylcsh:Biology (General)lcsh:QD1-999030220 oncology & carcinogenesisIntroductory Journal ArticleInternational Journal of Molecular Sciences
researchProduct

A novel ultradeformable liposomes of Naringin for anti-inflammatory therapy

2018

[EN] Ultradeformable liposomes were formulated using naringin (NA), a flavanone glycoside, at different concentrations (3, 6 and 9 mg/mL). Nanovesicles were small size (similar to 100 nm), regardless of the NA concentration used, and monodisperse (PI<0.30). All formulations showed a high entrapment efficiency (similar to 88%) and a highly negative zeta potential (around -30 mV). The selected formulations were highly biocompatible as confirmed by in vitro studies using 3T3 fibroblasts. In vitro assay showed that the amounts (%) of NA accumulated in the epidermis (similar to 10%) could explain the anti-inflammatory properties of ultradeformable liposomes. In vivo studies confirmed the higher …

0301 basic medicineAnti-Inflammatory AgentsDermatitis02 engineering and technologyPharmacologyMicechemistry.chemical_compoundColloid and Surface ChemistryZeta potentialSkinLiposomeTransdermal penetrationPellSurfaces and InterfacesGeneral Medicine021001 nanoscience & nanotechnologyFlavanonesPhosphatidylcholinesTetradecanoylphorbol AcetateBetamethasoneFemale0210 nano-technologyFlavanoneBiotechnologymedicine.drugAntiinflamatorisCell Survivalmedicine.drug_classDrug CompoundingSkin AbsorptionAdministration CutaneousIn vivo studiesAnti-inflammatory03 medical and health sciencesIn vivomedicineAnimalsPhysical and Theoretical ChemistryNaringinUltradeformable liposomesPhosphatidylethanolaminesLysophosphatidylcholinesFibroblastsIn vitro030104 developmental biologychemistryLiposomesNIH 3T3 CellsAnti-inflammatoryNaringin
researchProduct

Pleomorphic forms of Borrelia burgdorferi induce distinct immune responses.

2016

Borrelia burgdorferi is the causative agent of tick-borne Lyme disease. As a response to environmental stress B. burgdorferi can change its morphology to a round body form. The role of B. burgdorferi pleomorphic forms in Lyme disease pathogenesis has long been debated and unclear. Here, we demonstrated that round bodies were processed differently in differentiated macrophages, consequently inducing distinct immune responses compared to spirochetes in vitro. Colocalization analysis indicated that the F-actin participates in internalization of both forms. However, round bodies end up less in macrophage lysosomes than spirochetes suggesting that there are differences in processing of these for…

0301 basic medicineAntigenicityChemokineProteomemedia_common.quotation_subjectmedicine.medical_treatment030106 microbiologyImmunologyBlotting WesternMicrobiologyimmune responsecolocalizationPathogenesis03 medical and health sciencesImmune systemLyme diseaseBacterial ProteinsmedicineHumansBorrelia burgdorferiInternalizationmedia_commonAntigens BacterialbiologyMacrophagesta1182pleomorphismbiology.organism_classificationmedicine.diseasebacterial infections and mycosesVirologyAntibodies BacterialActinsEndocytosis030104 developmental biologyCytokineInfectious DiseasesimmuunivasteBorrelia burgdorferibiology.proteinCytokinesLysosomesMicrobes and infection
researchProduct

Physicochemical and Preclinical Evaluation of Spermine-Derived Surfactant Liposomes for in Vitro and in Vivo siRNA-Delivery to Liver Macrophages

2016

Herein we report on a liposomal system for siRNA delivery consisting of cholesterol (Chol), distearoylphosphatidylcholine (DSPC), and surfactant TF (1-hydroxy-50-amino-3,4,7,10,13,16,19,22-octaoxa-37,41,45-triaza-pentacontane), a novel spermine derivative (HO-EG8-C12-spermine) which has shown improved siRNA delivery to cells in vitro and in vivo. Predominantly single-walled liposomes with reproducible sizes and moderately broad size distributions were generated with an automated extrusion device. The liposomes remained stable when prepared in the presence of siRNA at N/P ratios of 17-34. However, when mixed with human serum in equal volumes, larger aggregates in the size range of several hu…

0301 basic medicineAntigens Differentiation MyelomonocyticPharmaceutical ScienceSpermineFlow cytometryMiceSurface-Active Agents03 medical and health scienceschemistry.chemical_compoundDynamic light scatteringPulmonary surfactantAntigens CDIn vivoDrug DiscoverymedicineAnimalsParticle SizeRNA Small InterferingCells CulturedDrug CarriersLiposomemedicine.diagnostic_testReverse Transcriptase Polymerase Chain ReactionMacrophagesModels TheoreticalFlow CytometryIn vitroCholesterol030104 developmental biologyLiverchemistryBiochemistryLiposomesPhosphatidylcholinesMolecular MedicineSpermineDrug carrierMolecular Pharmaceutics
researchProduct

DNA demethylation caused By 5-Aza-2'-Deoxycytidine induces mitotic alterations and aneuploidy

2016

Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2′-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduc…

0301 basic medicineAntimetabolites Antineoplastic5-aza-2'-deoxycytidine (DAC); Aneuploidy; Chromosome methylation pattern; Chromosome Section; DNA demethylation; OncologyBlotting WesternAneuploidyMitosisApoptosisBiologymedicine.disease_causeDecitabineReal-Time Polymerase Chain ReactionChromosome Section03 medical and health scienceschromosome methylation patternChromosome instabilitymedicineTumor Cells CulturedHumansEpigeneticsaneuploidyRNA Messenger5-aza-2′-deoxycytidine (DAC)Cell ProliferationGeneticsChromosome AberrationsPloidiesReverse Transcriptase Polymerase Chain ReactionDNA Methylationmedicine.disease5-aza-2'-deoxycytidine (DAC)Gene Expression Regulation NeoplasticResearch Paper: ChromosomeSettore BIO/18 - Genetica030104 developmental biologyDNA demethylationOncologyMicroscopy FluorescenceDNA methylationColonic NeoplasmsCytogenetic AnalysisCancer researchDNA demethylationAzacitidinePloidyCarcinogenesisDNA hypomethylation
researchProduct

Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma

2020

Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of …

0301 basic medicineAntineoplastic AgentsReviewexosomesExtracellular vesiclesCatalysisInorganic Chemistrylcsh:Chemistry03 medical and health sciencesdrug delivery systems0302 clinical medicinemedicineHumansexosomedrug delivery systemmalignant pleural mesotheliomaMesotheliomaPhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5SpectroscopyDrug Carriersbusiness.industryPleural mesotheliomaMesothelioma MalignantOrganic ChemistryGeneral Medicinemedicine.diseaseMicrovesiclesComputer Science Applications030104 developmental biologylcsh:Biology (General)lcsh:QD1-999030220 oncology & carcinogenesisDrug deliveryCancer researchDelivery systemextracellular vesiclebusinessextracellular vesicles
researchProduct

Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides

2017

International audience; In this study, we aimed to evaluate the antioxidant and anti-inflammatory properties of Opuntia ficus-indica cactus cladode extracts in microglia BV-2 cells. Inflammation associated with microglia activation in neuronal injury can be achieved by LPS exposure. Using four different structurally and biologically well-characterized LPS serotypes, we revealed a structure-related differential effect of LPS on fatty acid β-oxidation and antioxidant enzymes in peroxisomes: Escherichia coli-LPS decreased ACOX1 activity while Salmonella minnesota-LPS reduced only catalase activity. Different cactus cladode extracts showed an antioxidant effect through microglial catalase activ…

0301 basic medicineAntioxidant[SDV]Life Sciences [q-bio]medicine.medical_treatmentAnti-Inflammatory AgentsPharmaceutical Scienceacyl-CoA oxidase 1; catalase; β-oxidation; <i>Escherichia coli</i>; lipopolysaccharides; LPS; nitric oxide; Opuntia; peroxisomes; <i>Salmonella minnesota</i>AntioxidantsAnalytical ChemistryMicechemistry.chemical_compoundSalmonellaDrug Discoverychemistry.chemical_classificationbiologyMicrogliaFatty AcidscatalaseOpuntiaPeroxisome[SDV] Life Sciences [q-bio]Neuroprotective Agentsmedicine.anatomical_structureBiochemistryChemistry (miscellaneous)CatalaseMolecular MedicineACOX1Microgliamedicine.symptomOxidation-ReductionLPSInflammationArticleCell LineNitric oxideMicrobiologylcsh:QD241-44103 medical and health scienceslcsh:Organic chemistrynitric oxideEscherichia colimedicineAnimalsSalmonella minnesotaPhysical and Theoretical Chemistryacyl-CoA oxidase 1[ SDV ] Life Sciences [q-bio]Plant ExtractsOrganic ChemistryperoxisomeslipopolysaccharidesOxidative Stress030104 developmental biologyEnzymechemistrybiology.proteinβ-oxidationReactive Oxygen SpeciesMolecules
researchProduct

On the prospect of serum exosomal miRNA profiling and protein biomarkers for the diagnosis of ascending aortic dilatation in patients with bicuspid a…

2018

Background: To determine the impact of circulating miRNA and protein activity on the severity of ascending aortic dilatation in patients with bicuspid (BAV) and tricuspid aortic valve (TAV). Methods: By reverse transcription polymerase chain reaction, exosomal circulating expression levels (versus healthy aorta) of miRNAs and absolute levels of transforming growth factor β (TGF-β), matrix metalloproteinases (MMP-2, -3 and -9), tissue inhibitors (TIMP-1, -2, -3 and -4), and soluble receptors for advanced glycation end products AGEs (sRAGE) were evaluated in ascending dilated aortas of 71 patients with different valve morphotype. Results: Less-dilated ascending aorta exhibited a specific miRN…

0301 basic medicineAortic valveAdultMalePathologymedicine.medical_specialtyBicuspid aortic valveHeart Valve Diseases030204 cardiovascular system & hematologyMatrix metalloproteinaseExosomesCohort Studies03 medical and health sciences0302 clinical medicineBicuspid aortic valveBicuspid Aortic Valve DiseaseGlycationmedicine.arteryAscending aortamedicineHumansProspective StudiesReceptorTissue inhibitorAortaAgedAortabusiness.industryAortic failure Ascending aortic dilatationGene Expression ProfilingTransforming growth factor-βMicroRNAMiddle Agedmedicine.diseaseAortic AneurysmReverse transcription polymerase chain reactionMatrix metalloproteinaseMicroRNAs030104 developmental biologymedicine.anatomical_structureAortic Valvecardiovascular systemFemaleTricuspid ValveCardiology and Cardiovascular MedicinebusinessBiomarkersInternational journal of cardiology
researchProduct

Clearing Amyloid-β through PPARγ/ApoE Activation by Genistein is a Treatment of Experimental Alzheimer’s Disease

2016

Amyloid-b (Ab) clearance from brain, which is decreased in Alzheimer's disease, is facilitated by apolipoprotein E (ApoE). ApoE is upregulated by activation of the retinoid X receptor moiety of the RXR/PPAR dimeric receptor. As we have previously demonstrated, estrogenic compounds, such as genistein, have antioxidant activity, which can be evidenced by increased expression of manganese superoxide dismutase (MnSOD). Furthermore, genistein is a non-toxic, well-tested, and inexpensive drug that activates PPARg receptor. We isolated and cultured cortical astrocytes from dissected cerebral cortices of neonatal mice (C57BL/6 J). Preincubation with genistein (5 mM) for 24 hours, prior to the addit…

0301 basic medicineApolipoprotein EApolipoprotein BPeroxisome proliferator-activated receptorGenisteinPlaque Amyloid01 natural sciencesBiochemistrychemistry.chemical_compound0302 clinical medicine030212 general & internal medicineReceptorCells CulturedNootropic Agentschemistry.chemical_classificationbiologyGeneral NeuroscienceBrainGeneral MedicineGenisteinPsychiatry and Mental healthClinical PsychologyNeuroprotective AgentsFemalePeroxisome proliferator-activated receptor gammamedicine.medical_specialtyTetrahydronaphthalenesMice TransgenicRetinoid X receptor03 medical and health sciencesApolipoproteins EDownregulation and upregulationAlzheimer DiseaseIn vivoPhysiology (medical)Internal medicineAvoidance LearningmedicineAnimalsHabituation PsychophysiologicMaze LearningAmyloid beta-PeptidesRecognition PsychologyOlfactory Perception0104 chemical sciencesMice Inbred C57BLPPAR gamma010404 medicinal & biomolecular chemistryDisease Models Animal030104 developmental biologyEndocrinologychemistryBexaroteneAstrocytesbiology.proteinPhytoestrogensGeriatrics and Gerontology030217 neurology & neurosurgeryJournal of Alzheimer's Disease
researchProduct

PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia

2020

Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron‑sulfur clus-ters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mito…

0301 basic medicineAtaxiaCell SurvivalCaspase 3PPAR agonistlcsh:RC321-57103 medical and health sciencesMice0302 clinical medicineIron-Binding ProteinsmedicineNeuritesAnimalsHumansMyocytes CardiacNeurodegenerationDorsal root ganglia neuronslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMembrane Potential MitochondrialNeuronsCardiomyocytesbiologyChemistryFrataxinNeurodegenerationCalpainLipid DropletsPeroxisomemedicine.diseaseCell biologyMitochondriaRatsPPAR gamma030104 developmental biologyNeurologyMitochondrial biogenesisFriedreich AtaxiaFrataxinbiology.proteinThiazolidinedionesmedicine.symptomMitochondrial function030217 neurology & neurosurgery
researchProduct