Search results for "Solanum lycopersicum"

showing 10 items of 103 documents

The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling

2020

AbstractTomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expans…

0106 biological sciences0301 basic medicineAgricultural geneticsCell divisionPlant molecular biologyMolecular biologyTranscriptional regulatory elementsPlant physiologyBiotecnologia agrícolalcsh:MedicineMolecular engineering in plantsPlantesBiology01 natural sciencesArticle03 medical and health sciencesSolanum lycopersicumPlant hormonesDry matterlcsh:ScienceGeneTranscription factorRegulator genePlant ProteinsMultidisciplinaryWater transportlcsh:RGenètica vegetalfood and beveragesGibberellinsUp-Regulation02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sostenibleRepressor ProteinsHorticulturePlant BreedingGENETICA030104 developmental biologyFruitGibberellinlcsh:QPlant biotechnologyFISIOLOGIA VEGETALSink (computing)Plant sciences010606 plant biology & botanyBiotechnologySignal Transduction
researchProduct

Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato

2021

Abstract Plant association with arbuscular mycorrhizal fungi (AMF) can increase their ability to overcome multiple stresses, but their impact on plant interactions with herbivorous insects is controversial. Here we show higher mortality of the leaf-chewer Spodoptera exigua when fed on tomato plants colonized by the AMF Funneliformis mosseae, evidencing mycorrhiza-induced resistance. In search of the underlying mechanisms, an untargeted metabolomic analysis through ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS) was performed. The results showed that mycorrhizal symbiosis had a very limited impact on the leaf metabolome in the absence of stress, but significantly m…

0106 biological sciences0301 basic medicineAzelaic acidPhysiologyPlant Science01 natural sciences03 medical and health sciencesMetabolomicsSolanum lycopersicumSymbiosisTandem Mass SpectrometrySpodoptera exiguaMycorrhizaeBotanyExiguamedicineMetabolomeAnimalsMetabolomicsmycorrhiza induced resistanceHerbivoryArbuscular mycorrhizaSymbiosisHerbivorebiologyAcademicSubjects/SCI01210AlkaloidfungiFungifood and beveragesbiology.organism_classificationResearch PapersArbuscular mycorrhizaspodoptera exigua030104 developmental biologyDefence primingPlant—Environment InteractionsMycorrhiza induced resistance Spodoptera exiguaChromatography Liquid010606 plant biology & botanymedicine.drug
researchProduct

Identification of key genes and its chromosome regions linked to drought responses in leaves across different crops through meta-analysis of RNA-Seq …

2019

Background Our study is the first to provide RNA-Seq data analysis related to transcriptomic responses towards drought across different crops. The aim was to identify and map which genes play a key role in drought response on leaves across different crops. Forty-two RNA-seq samples were analyzed from 9 published studies in 7 plant species (Arabidopsis thaliana, Solanum lycopersicum, Zea mays, Vitis vinifera, Malus X domestica, Solanum tuberosum, Triticum aestivum). Results Twenty-seven (16 up-regulated and 11 down-regulated) drought-regulated genes were commonly present in at least 7 of 9 studies, while 351 (147 up-regulated and 204 down-regulated) were commonly drought-regulated in 6 of 9 …

0106 biological sciences0301 basic medicineCrops AgriculturalLeavesArabidopsisPlant ScienceGenes Plant01 natural sciencesZea maysChromosomes PlantTranscriptome03 medical and health scienceschemistry.chemical_compoundSolanum lycopersicumAuxinlcsh:BotanyArabidopsis thalianaVitisRNA-SeqDrought Leaves Meta-analysis RNA-Seq Seedlings TranscriptomicGeneAbscisic acidTriticumSolanum tuberosumchemistry.chemical_classificationGeneticsbiologyDroughtDehydrationAbiotic stressfungiChromosome Mappingfood and beveragesbiology.organism_classificationlcsh:QK1-989Plant LeavesMeta-analysis030104 developmental biologychemistryCell wall organizationTranscriptomicDrought; Leaves; Meta-analysis; RNA-Seq; Seedlings; Transcriptomic; Arabidopsis; Chromosome Mapping; Chromosomes Plant; Crops Agricultural; Dehydration; Genes Plant; Lycopersicon esculentum; Malus; Plant Leaves; RNA Plant; Solanum tuberosum; Triticum; Vitis; Zea maysSeedlingsRNA PlantMalusSolanum010606 plant biology & botanyResearch Article
researchProduct

Identification of Stress Associated microRNAs in Solanum lycopersicum by High-Throughput Sequencing

2019

Tomato (Solanum lycopersicum) is one of the most important crops around the world and also a model plant to study response to stress. High-throughput sequencing was used to analyse the microRNA (miRNA) profile of tomato plants undergoing five biotic and abiotic stress conditions (drought, heat, P. syringae infection, B. cinerea infection, and herbivore insect attack with Leptinotarsa decemlineata larvae) and one chemical treatment with a plant defence inducer, hexanoic acid. We identified 104 conserved miRNAs belonging to 37 families and we predicted 61 novel tomato miRNAs. Among those 165 miRNAs, 41 were stress-responsive. Reverse transcription quantitative PCR (RT-qPCR) was used to valida…

0106 biological sciences0301 basic medicineEstrèslcsh:QH426-470ATP-binding cassette transporter01 natural sciencesbehavioral disciplines and activitiesDNA sequencingdifferential expression03 medical and health sciencesDifferential expressionSolanum lycopersicummicroRNAGeneticsTomàquetsGeneGenetics (clinical)Abiotic componentGeneticsbiotic and abiotic stress responseHigh-throughput sequencingbiologyAbiotic stressfungi<i>Solanum lycopersicum</i>food and beverageshigh-throughput sequencingbiology.organism_classificationlcsh:Genetics030104 developmental biologyReal-time polymerase chain reactionmiRNAsBiotic and abiotic stress responseSolanumHexanoic acidhexanoic acidmiRNA targets010606 plant biology & botanyGenes
researchProduct

Selenium biofortification and grafting modulate plant performance and functional features of cherry tomato grown in a soilless system

2021

Abstract Selenium (Se) is an essential trace element for humans due to its importance in a number of enzymes. Vegetable grafting is a valuable tool to overcome biotic and/or abiotic issues and to increase vigour, yield traits and fruit quality. The present work aimed at testing both different Se concentrations (0.0, 1.0, 2.0 and 4.0 μmol Se L−1) supplied via fertigation and grafting on cherry tomato in soilless culture. Se at 2.0 μmol L−1 improved total fruit yield by 60.0 % and 31.4 % in ungrafted and grafted plants, respectively as compared to the control. Marketable yield was positively affected by Se-biofortification and grafting. Se at 2.0 μmol L−1 improved N use efficiency by 60.3 % a…

0106 biological sciences0301 basic medicineFunctional attributeBiofortificationHorticulture01 natural sciences03 medical and health scienceschemistry.chemical_compoundDry weightCherry tomatoCarotenoidchemistry.chemical_classificationbiologyfood and beveragesSe-biofortificationSolanum lycopersicum L.Hydroponicsbiology.organism_classificationAscorbic acidGraftingHealth-promoting compoundLycopeneHorticulture030104 developmental biologychemistryRootstock010606 plant biology & botanyScientia Horticulturae
researchProduct

The nucleotide sequence of a recombinant tomato yellow leaf curl virus strain frequently detected in Sicily isolated from tomato plants carrying the …

2017

In July 2016, an aggressive syndrome of tomato yellow leaf curl disease was reported in Sicily in tomato plants carrying the Ty-1 resistance gene. A total of 34 samples were collected and analyzed. Twenty-seven out of the 34 samples analyzed appeared to contain only recombinant molecules. One full sequence was obtained after cloning. Alignments and plot similarity analysis showed that the genome of the recombinant, named TYLCV-IL[IT:Sic23:16], was mostly derived from tomato yellow leaf curl virus (TYLCV), with a small region of 132 nucleotides in the non-coding region between the stem-loop and the start of the V2 ORF replaced by 124 nucleotides derived from a virus of a different species, t…

0106 biological sciences0301 basic medicineGenes ViralSequence analysisvirusesBiology01 natural sciencesViruslaw.invention03 medical and health sciencesSolanum lycopersicumlawVirologyPlant ImmunityCultivarTomato yellow leaf curl virusGeneSicilyDisease ResistancePlant DiseasesRecombination GeneticBase SequencefungiNucleic acid sequencefood and beveragesHigh-Throughput Nucleotide SequencingSettore AGR/12 - Patologia VegetaleGeneral MedicineSequence Analysis DNAbiology.organism_classificationPlants Genetically ModifiedVirologyPlant LeavesHorticulture030104 developmental biologyBegomovirusRecombinant DNALeaf curlDisease Susceptibility010606 plant biology & botanyGeminivirus molecular evolution recombination
researchProduct

Discovery of a Major QTL Controlling Trichome IV Density in Tomato Using K-Seq Genotyping

2021

[EN] Trichomes are a common morphological defense against pests, in particular, type IV glandular trichomes have been associated with resistance against different invertebrates. Cultivated tomatoes usually lack or have a very low density of type IV trichomes. Therefore, for sustainable management of this crop, breeding programs could incorporate some natural defense mechanisms, such as those afforded by trichomes, present in certain Solanum species. We have identified a S. pimpinellifolium accession with very high density of this type of trichomes. This accession was crossed with a S. lycopersicum var. cerasiforme and a S. lycopersicum var. lycopersicum accessions, and the two resulting F2 …

0106 biological sciences0301 basic medicineGenotypelcsh:QH426-470QTLQuantitative Trait LociChromosome 9Genetic relationshiptomatoQuantitative trait locusMorfologia (Biologia)01 natural sciencesTomatoArticleTrichomes type IVCropK-seq03 medical and health sciencesSolanum lycopersicumGeneticsbiochemistryHumansGenotypingGenetics (clinical)Disease ResistancePlant DiseasesGeneticstrichomes type IVbiologyfungiGenètica vegetal<i>Solanum pimpinellifolium</i>Chromosome Mappingfood and beveragesSolanum pimpinellifoliumTrichomesbiology.organism_classificationSolanum pimpinellifoliumTrichomeGENETICAPlant Breedinglcsh:Genetics030104 developmental biologytrichomesSolanum010606 plant biology & botanyGenes
researchProduct

Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array

2019

Tomato (Solanum lycopersicum L.) is one of the most important crops worldwide. In this study, we used 7720 genome-wide SNPs to characterize the genetic diversity within a tomato germplasm collection enriched with 64 accessions from southern Italy of the so called "da serbo" type i.e. drought-tolerant and long storage landraces. Notwithstanding the relatively small collection area, 1575 (20.4%) polymorphic SNPs, mostly on Chr11, detected considerable levels of genetic variation. Maximum parsimony analysis of genetic distance revealed four main clusters and clearly separated most "da serbo" landraces from the outgroups. One of the clusters grouped the landraces from the Mount Vesuvius area, t…

0106 biological sciences0301 basic medicineGermplasmdrought toleranceSingle-nucleotide polymorphismPlant ScienceBiology01 natural sciences03 medical and health sciencesSettore AGR/07 - Genetica AgrariaGenetic variationAlleleEcology Evolution Behavior and SystematicsGenetic diversitybusiness.industryfungifruit qualityfood and beveragesbiology.organism_classificationSettore AGR/02 - Agronomia E Coltivazioni Erbaceedrought tolerance; fruit quality; shelf life; Solanum lycopersicum germplasm; SolCAP Infinium arrayBiotechnologySolanum lycopersicum germplasm030104 developmental biologyGenetic distanceGenetic markerSolanum lycopersicum germplasm shelf life SolCAP Infinium array fruit quality drought toleranceshelf lifeSolanumSolCAP Infinium arraybusiness010606 plant biology & botanyPlant Biosystems - An International Journal Dealing with all Aspects of Plant Biology
researchProduct

Expression of miR159 Is Altered in Tomato Plants Undergoing Drought Stress.

2019

In a scenario of global climate change, water scarcity is a major threat for agriculture, severely limiting crop yields. Therefore, alternatives are urgently needed for improving plant adaptation to drought stress. Among them, gene expression reprogramming by microRNAs (miRNAs) might offer a biotechnologically sound strategy. Drought-responsive miRNAs have been reported in many plant species, and some of them are known to participate in complex regulatory networks via their regulation of transcription factors involved in water stress signaling. We explored the role of miR159 in the response of Solanum lycopersicum Mill. plants to drought stress by analyzing the expression of sly-miR159 and …

0106 biological sciences0301 basic medicineMYB transcription factorsSequeresDrought tolerance<i>P5CS</i>Plant Sciencedrought01 natural sciencesArticle03 medical and health sciencesSolanum lycopersicumGene expressionTomàquetsColorado potato beetleputrescineMYBprolineTranscription factorEcology Evolution Behavior and SystematicsEcologybiologybusiness.industryColorado potato beetle<i>Solanum lycopersicum</i>fungiBotanyfood and beveragesP5CSbiology.organism_classificationmiR159Biotechnology030104 developmental biologyQK1-989RNASolanumbusinessTranscription Factor GeneSolanaceae010606 plant biology & botanyPlants (Basel, Switzerland)
researchProduct

The bacterial microbiome of meloidogyne-based disease complex in coffee and tomato

2020

The Meloidogyne-based disease complexes (MDCs) are caused by the interaction of different root-knot nematode species and phytopathogenic fungi. These complexes are devastating several important crops worldwide including tomato and coffee. Despite their relevance, little is known about the role of the bacterial communities in the MDCs. In this study 16s rDNA gene sequencing was used to analyze the bacterial microbiome associated with healthy and infested roots, as well with females and eggs of Meloidogyne enterolobii and M. paranaensis, the causal agents of MDC in tomato and coffee, respectively. Each MDC pathosystems displayed a specific taxonomic diversity and relative abundances constitut…

0106 biological sciences0301 basic medicineMeloidogynePathologie végétalePlant Sciencelcsh:Plant culture01 natural scienceshttp://aims.fao.org/aos/agrovoc/c_479203 medical and health sciencesMaladie des planteshttp://aims.fao.org/aos/agrovoc/c_5962Meloidogyne paranaensisSolanum lycopersicumcorky rootAlteromonadalesBotanyhttp://aims.fao.org/aos/agrovoc/c_1721lcsh:SB1-1110MicrobiomeH20 - Maladies des planteshttp://aims.fao.org/aos/agrovoc/c_4475Original Researchfunctional profilehttp://aims.fao.org/aos/agrovoc/c_4729biologypathobiomeP34 - Biologie du solfood and beveragesNocardiaCoffea arabicabiology.organism_classification16S ribosomal RNABacillalesMeloidogyne enterolobiiBurkholderiales030104 developmental biologyNematodehttp://aims.fao.org/aos/agrovoc/c_5974Meloidogyne enterolobii010606 plant biology & botany
researchProduct