Search results for "Solar Cell"

showing 10 items of 410 documents

Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs

2015

Two novel double branched D–π–A organic dyes (DB dyes) are synthesized to investigate the influence of the linkage location in DB dyes on the performance of dye-sensitized solar cells (DSSCs), where phenothiazine is introduced as a donor, thiophene–benzotriazole unit as the π-bridge and cyanoacrylic acid as the electron-acceptor. The photophysical, electrochemical and photovoltaic properties of the dyes are systematically investigated. The results show that the location of the linkage unit has a small effect on the physical and electrochemical properties of the dyes. However, when the dyes are applied in DSSCs, an obvious decline of short-circuit current (Jsc) and open-circuit voltage (Voc)…

Linkage (software)Renewable Energy Sustainability and the EnvironmentElectron lifetimeChemistryPhotovoltaic systemEnergy conversion efficiencyGeneral ChemistryElectrochemistryDye-sensitized solar cellchemistry.chemical_compoundChemical engineeringPhenothiazineOrganic chemistryGeneral Materials ScienceJournal of Materials Chemistry A
researchProduct

Light-Induced Formation of Pb3+Paramagnetic Species in Lead Halide Perovskites

2018

Hybrid halide perovskites are soft materials processed at room temperature, revolutionary players in the photovoltaic field. Nowadays, investigation of the nature and role of defects is seen as one of the key challenges toward full comprehension of their behavior and achievement of high device stability under working conditions. We reveal the reversible generation, under illumination, of paramagnetic Pb3+ defects in CH3NH3PbI3, synthesized in ambient conditions, induced by the presence of Pb-O defects in the perovskite structure that may trap photogenerated holes, possibly mediated by the concomitant oxidation and migration of ions. According to the mechanism that we hypothesize, one charge…

Materials Chemistry2506 Metals and AlloysMaterials sciencePerovskites epr esr Pb3+ defects CH3NH3PbI3HalideEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionIonChemistry (miscellaneous); Renewable Energy Sustainability and the Environment; Fuel Technology; Energy Engineering and Power Technology; Materials Chemistry2506 Metals and AlloysParamagnetismlawSolar cellMaterials ChemistryPerovskitesRenewable EnergyElectron paramagnetic resonancePerovskite (structure)PhotocurrentSustainability and the EnvironmentRenewable Energy Sustainability and the Environment021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyChemical physicsChemistry (miscellaneous)Light induced0210 nano-technology
researchProduct

Ultrafast Charge Separation at the CdSe/CdS Core/Shell Quantum Dot/Methylviologen Interface: Implications for Nanocrystal Solar Cells

2011

Exciton separation dynamics in the electron transfer system containing highly photostable CdSe/CdS core/shell nanocrystal quantum dots and adsorbed methylviologen was investigated by means of femtosecond absorption spectroscopy. The experiments revealed that electron extraction from the photoexcited core is possible, and the rate of the ET reaction strongly depends on the CdS shell thickness. A CdS associated exponential decay constant β of 0.33 A−1 was obtained reflecting the electronic barrier effect of the shell. These findings show that core/shell structures are well suited for the design of optimized QD-based solar cells.

Materials scienceAbsorption spectroscopyExcitonShell (structure)ElectronQuantum dot solar cellCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceElectron transferGeneral EnergyNanocrystalChemical physicsQuantum dotPhysics::Atomic and Molecular ClustersPhysical and Theoretical ChemistryAtomic physicsThe Journal of Physical Chemistry C
researchProduct

Metal-free organic dyes with di(1-benzothieno)[3,2-b:2′,3′-d]pyrrole as an auxiliary donor for efficient dye-sensitized solar cells: Effect of the mo…

2019

Abstract A series of novel di(1-benzothieno)[3,2-b:2′,3′-d]pyrrole (DBTP)-based organic dyes (WL5-10) with D-D-π-A or D-D-A-π-A configurations are designed and the relationship between the properties and molecular configurations of these organic dyes are studied systematically. WL5,7–8 with D-D-π-A configuration incorporating triphenylamine or phenothiazine as donor and DBTP as auxiliary donor and WL9-10 with D-D-A-π-A configuration incorporating benzothiadiazole as an auxiliary acceptor are synthesized to study the effect of the molecular engineering on the photovoltaic performance. WL5,7–8 exhibit similar absorption spectra and high molar extinction coefficient. Especially, the dye WL5 wi…

Materials scienceAbsorption spectroscopyProcess Chemistry and TechnologyGeneral Chemical EngineeringEnergy conversion efficiency02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyTriphenylaminePhotochemistry01 natural sciencesAcceptor0104 chemical sciencesMolecular engineeringchemistry.chemical_compoundDye-sensitized solar cellchemistryPhenothiazine0210 nano-technologyPyrroleDyes and Pigments
researchProduct

Dithienopyrrolobenzothiadiazole-based organic dyes for efficient dye-sensitized solar cells

2014

Four novel D–π–A metal-free organic dyes DTP1–4 containing a dithienopyrrolobenzothiadiazole (DTPBT) unit were synthesized and applied in dye-sensitized solar cells, where DTPBT was employed as a π-spacer for the first time. The photophysical, electrochemical and photovoltaic properties of the dyes were systematically investigated. The dyes DTP1–4 showed broad absorption spectra and high molar extinction coefficient, resulting in high light harvesting efficiency. In addition, the impacts of donors and the thiophene unit as an additional π-spacer were also studied. The results showed that the dye DTP4 with triphenylamine as the donor exhibited better photovoltaic performance than DTP1–3 with…

Materials scienceAbsorption spectroscopyRenewable Energy Sustainability and the EnvironmentPhotovoltaic systemEnergy conversion efficiencyGeneral ChemistryMolar absorptivityPhotochemistryTriphenylaminechemistry.chemical_compoundDye-sensitized solar cellchemistryPhenothiazineThiopheneGeneral Materials ScienceJ. Mater. Chem. A
researchProduct

Anti-recombination organic dyes containing dendritic triphenylamine moieties for high open-circuit voltage of DSSCs

2013

Abstract Three novel sensitizers with dendritic triphenylamine moieties were synthesized and used for dye-sensitized solar cells (DSSCs). Their absorption spectra, electrochemical and photovoltaic properties were extensively investigated. All three DSSCs exhibit high open-circuit voltage over 0.8 V. The photovoltaic results indicate that the dendritic triphenylamine units improve the open-circuit voltage, which is attributed to the retardation of charge recombination, demonstrating that non-planar and larger molecules exert better blocking function. Under standard global AM 1.5 solar conditions, the best performance of the DSSCs exhibits a short-circuit current density of 10.35 mA cm−2, an …

Materials scienceAbsorption spectroscopybusiness.industryOpen-circuit voltageProcess Chemistry and TechnologyGeneral Chemical EngineeringPhotovoltaic systemEnergy conversion efficiencyTriphenylamineElectrochemistryPhotochemistrychemistry.chemical_compoundDye-sensitized solar cellchemistryOptoelectronicsbusinessCurrent densityDyes and Pigments
researchProduct

Characterization of the defect density states in MoOx for c-Si solar cell applications

2021

Thin layers of MoOx have been deposited by thermal evaporation followed by post-deposition annealing. The density of states distributions of the MoOx films were extracted deconvoluting the absorption spectra, measured by a photothermal deflection spectroscopy setup, including the small polaron contribution. Results revealed a sub-band defect distribution centered 1.1 eV below the conduction band; the amplitude of this distribution was found to increase with post-deposition annealing temperature and film thickness.

Materials scienceAbsorption spectroscopyc-Si solar cell photovoltaic transition metal oxide molybdenum oxide density of states small polaronAnnealing (metallurgy)02 engineering and technologyPolaron01 natural sciencesMolecular physicsSettore ING-INF/01 - Elettronicalaw.inventionlaw0103 physical sciencesSolar cellMaterials ChemistryElectrical and Electronic EngineeringSpectroscopy010302 applied physicsThin layersDensity of statesPhotothermal therapy021001 nanoscience & nanotechnologyCondensed Matter Physicsc-Si solar cellMolybdenum oxideElectronic Optical and Magnetic MaterialsSmall polaronTransition metal oxideDensity of states0210 nano-technologyPhotovoltaicDensity of state
researchProduct

Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications

2020

AbstractThe application of molybdenum oxide in the photovoltaic field is gaining traction as this material can be deployed in doping-free heterojunction solar cells in the role of hole selective contact. For modeling-based optimization of such contact, knowledge of the molybdenum oxide defect density of states (DOS) is crucial. In this paper, we report a method to extract the defect density through nondestructive optical measures, including the contribution given by small polaron optical transitions. The presence of defects related to oxygen-vacancy and of polaron is supported by the results of our opto-electrical characterizations along with the evaluation of previous observations. As part…

Materials scienceAnnealing (metallurgy)Oxide02 engineering and technologyPolaronSettore ING-INF/01 - Elettronica01 natural scienceslaw.inventionmolybdenum oxidechemistry.chemical_compoundlaw0103 physical sciencesThermalSolar cellGeneral Materials Sciencepolaron theoryElectrical and Electronic Engineering010302 applied physicsbusiness.industrysilicon heterojunction solar cellHeterojunction021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and Opticschemistrymolybdenum oxide density of states polaron theory silicon heterojunction solar celldensity of statesDensity of statesOptoelectronicsDensity functional theory0210 nano-technologybusiness
researchProduct

Graded Carrier Concentration Absorber Profile for High Efficiency CIGS Solar Cells

2015

We demonstrate an innovative CIGS-based solar cells model with a graded doping concentration absorber profile, capable of achieving high efficiency values. In detail, we start with an in-depth discussion concerning the parametrical study of conventional CIGS solar cells structures. We have used the wxAMPS software in order to numerically simulate cell electrical behaviour. By means of simulations, we have studied the variation of relevant physical and chemical parameters-characteristic of such devices-with changing energy gap and doping density of the absorber layer. Our results show that, in uniform CIGS cell, the efficiency, the open circuit voltage, and short circuit current heavily depe…

Materials scienceArticle SubjectBand gaplcsh:TJ807-830lcsh:Renewable energy sourceschemistry.chemical_elementSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaTHIN-FILMSOpticsGeneral Materials ScienceCU(INGA)SE-2Renewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageDopingSettore ING-INF/02 - Campi ElettromagneticiGeneral ChemistryCopper indium gallium selenide solar cellsAtomic and Molecular Physics and OpticschemistryLAYERMolybdenumOptoelectronicsbusinessPhotovoltaicShort circuitLayer (electronics)International Journal of Photoenergy
researchProduct

Porphyrin Antenna-Enriched BODIPY–Thiophene Copolymer for Efficient Solar Cells

2018

International audience; Low bandgap A−π–D copolymer, P(BdP-DEHT), consisting of alternating BOronDIPYrromethene (BODIPY) and thiophene units bridged by ethynyl linkers, and its porphyrin-enriched analogue, P(BdP/Por-DEHT), were prepared, and their optical and electrochemical properties were studied. P(BdP-DEHT) exhibits strong absorption in the 500–800 nm range with an optical bandgap of 1.74 eV. On the basis of cyclic voltammetry, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are evaluated to be −5.40 and −3.66 eV, respectively. After the anchoring of zinc(II) porphyrin on the BODIPY unit, P(BdP/Por-DEHT) displays broadened absor…

Materials scienceBand gap02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyPolymer solar cellporphyrin substitutionDichlorobenzenechemistry.chemical_compoundThiopheneGeneral Materials ScienceHOMO/LUMOsolvent vapor annealing[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyPorphyrin0104 chemical sciencespower conversion efficiencyCrystallographyApiD copolymerchemistry[ CHIM.MATE ] Chemical Sciences/Material chemistryBODIPYCyclic voltammetry0210 nano-technologypolymer solar cells
researchProduct