Search results for "Solar cells"
showing 10 items of 178 documents
Electro-optical characterization of ruthenium-based dye sensitized solar cells: A study of light soaking, ageing and temperature effects
2017
Abstract In this work, we report on the electro-optical characterization of Dye Sensitized Solar Cells (DSSCs) which use ruthenium complexes as sensitizers. In particular, several kinds of measurements have been performed to study the electrical performances and the efficiency levels of the cells at different operating conditions. In detail, the measurements have been conducted at varying temperatures and hours of light soaking. Our results show that the short circuit current density J SC , the open circuit voltage V OC and the conversion efficiency η increase with the hours of light soaking, while they decrease with temperature. A thorough investigation on the light soaking process at the …
One diode circuital model of light soaking phenomena in Dye-Sensitized Solar Cells
2018
Abstract In this work, we report on the modelling of light soaking effect on Ruthenium-based Dye Sensitized Solar cells (DSSCs). Such a phenomenon can be detected when exposing the cells at increasing hours of illumination and produces a reversible performance increase. Starting from the results obtained through the electro-optical characterization of the cells, we applied a one-diode circuital-model. Our results show a good agreement between the experimental and the simulated data, with a mean square error in the order of 10−12 and a maximum error in current lower than 0.6%. Finally such results allowed us to infer some precise trends followed by the cells main electrical parameters and of…
Effect of methaacrylic acid on the structure of Eu:YAG-PMMA composites
2014
Polymeric composites of lanthanide-doped materials were recently considered as potential candidates for the development of light emitting diodes, lasers and luminescent concentrators for solar cells. In particular, nanoparticles of yttrium aluminum garnet (YAG) doped with cerium ions embedded in polymetylmetacrylate (PMMA) have been valuable for white LED devices [1,2]. Different structures and micromechanical properties have been observed when the methacrylic acid (MAA) is present in the composite. With the aim to understand the effect of MAA on the composite structure, a series of Eu:YAG composites prepared by in situ polymerization starting from mixtures of MAA and methylmetacrylate (MMA…
SPEEDAM 2010 Poster REC0616: An electrochemical route towards the fabrication of nanostructured semiconductor solar cells
2010
Energy Optimization of BIPV Glass Blocks: a Multi-software Study
2017
Abstract The aim of this paper is to show the results of the performance analyses carried out on four patented glass block configurations integrated with third-generation Dye-sensitized Solar Cell (DSC) modules. The analyses take into account the thermal, optical and electrical performance by using three different software (COMSOL Multiphysics, WINDOW, Zemax), also enabling to take into consideration the peculiar three-dimensional geometry of this innovative glazed product. Starting from these results, new configurations improved as for the thermal insulation, are also introduced and studied, in order to make further considerations about the applicability of this building component for the …
CIGS PV Module Characteristic Curves Under Chemical Composition and Thickness Variations
2014
This paper analyzes how the electrical characteristics of a CIGS photovoltaic module are affected by the chemical composition and by the thickness variations of the CIGS absorber. The electrical characteristics here considered are the short circuit current, the open circuit voltage, the efficiency and the power peak. The chemical composition is varied by tuning the ratio between gallium and indium. This analysis has been performed by means of the wxAMPS software, developed by the University of Illinois. The above variations have been taken into account on a PV module made of 72 cells. This analysis has been carried out employing a PV module mathematical model developed and implemented by th…
PV systems in the vertical walls: A comparison of innovative structures
2016
This paper presents the performance comparison of PV windows with the purpose of tracing the behavior of next-generation systems, which could favor architectonical integration. More in detail, a dye sensitized solar cell (DSSC) and blue and grey thin film silicon panels have been analyzed. The systems can be placed behind a window or behind a wall of glass blocks. The three generation systems are then compared in terms of both efficiency and Fill Factor.
Electrical-optical characterization of multijunction solar cells under 2000X concentration
2014
In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties…
Nanotechnology for Photovoltaic Cells and Energy Efficiency
2015
Abstract. The intent of this paper is to connect science and technology in order to demonstrate how, in the field of on photovoltaic technologies, thin film solar cells have been the focus of many research facilities in recent years that are working to decrease manufacturing costs and increase cell efficiency. New research suggests that it might be possible to add a nanoscopic relief pattern to the surface of solar cells that makes them non-reflective significantly boosting efficiency and at the same time making them highly non-stick and self-cleaning. The paper presents the challenges and approaches to engineer the active layer of the cell, in order to obtain cells made up of components as…
Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices
2018
In this study we investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude modulation (AM) and frequency modulation (FM) KPFM methods on a reference s…