Search results for "Solar"

showing 10 items of 2301 documents

Three X-ray Flares Near Primary Eclipse of the RS CVn Binary XY UMa

2016

We report on an archival X-ray observation of the eclipsing RS CVn binary XY UMa ($\rm P_{orb}\approx$ 0.48d). In two $\emph{Chandra}$ ACIS observations spanning 200 ks and almost five orbital periods, three flares occurred. We find no evidence for eclipses in the X-ray flux. The flares took place around times of primary eclipse, with one flare occurring shortly ($<0.125\rm P_{orb}$) after a primary eclipse, and the other two happening shortly ($<0.05\rm P_{orb}$) before a primary eclipse. Two flares occurred within roughly one orbital period ($\Delta \phi\approx1.024\rm P_{orb}$) of each other. We analyze the light curve and spectra of the system, and investigate coronal length scales both…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxOrbital eccentricityAstrophysics01 natural scienceslaw.inventionOrb (astrology)Settore FIS/05 - Astronomia E AstrofisicalawPrimary (astronomy)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesEclipseHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsLight curveOrbital periodstars: binariesSpace and Planetary Sciencestars: flareAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFlare
researchProduct

First light observations of the solar wind in the outer corona with the Metis coronagraph

2021

In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first H I …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaSolar windFOS: Physical sciencesAstrophysics01 natural sciencesWind speedlaw.inventionsymbols.namesakeSun: corona – solar wind – Sun: UV radiationlaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsCoronagraphSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Sun: coronaAstronomy and AstrophysicsPlasmaSolar wind Sun: corona Sun: UV radiationSun: UV radiationCoronaSolar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceTemporal resolutionPhysics::Space PhysicssymbolsOutflowDoppler effect
researchProduct

IGR J17329-2731: The birth of a symbiotic X-ray binary

2018

We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7$^{+3.4}_{-1.2}$ kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680$\pm$3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption ($\gg$10$^{23}$ cm$^{-2}$) and prominent emission lines at 6.4 …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesFluxAstrophysicsCompact star01 natural sciencesSpectral linelaw.inventionTelescopeSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieNeutron starX-rays: individuals: IGR J17329-273113. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Photometric variability of the Be star CoRoT-ID 102761769

2010

Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, wich exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. For the first time, we can now study in detail Be stars outside the Earth's atmosphere with sufficient temporal resolution. We investigate the variability of the Be Star CoRoT-ID 102761769 observed with the CoRoT satellite in the exoplanet field during the initial run. One low-resolution spectrum of the star was obtained wi…

010504 meteorology & atmospheric sciencesBe starFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsType (model theory)01 natural sciencesPartícules (Física nuclear)Luminositysymbols.namesake0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsStellar rotationBalmer seriesAstronomy and AstrophysicsCircumstellar envelopeLight curveStarsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceEsteroidessymbolsAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Study of a sample of faint Be stars in the exofield of CoRoT

2013

International audience; Context. Be stars are probably the most rapid rotators among stars in the main sequence (MS) and, as such, are excellent candidates to study the incidence of the rotation on the characteristics of their non-radial pulsations, as well as on their internal structure. Pulsations are also thought to be possible mechanisms that help the mass ejection needed to build up the circumstellar disks of Be stars.Aims. The purpose of this paper is to identify a number of faint Be stars observed with the CoRoT satellite and to determine their fundamental parameters, which will enable us to study their pulsation properties as a function of the location in the HR diagram and to searc…

010504 meteorology & atmospheric sciencesBe starHertzsprung–Russell diagramK-type main-sequence starstars: emission-lineAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral lineBlue stragglersymbols.namesakestars: rotation0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]AstronomyBeAstronomy and Astrophysicsstars: early-typeHerbig Ae/Be starT Tauri starStars[SDU]Sciences of the Universe [physics]Space and Planetary Sciencesymbolsstars: fundamental parametersstars: oscillationsAstrophysics::Earth and Planetary Astrophysicsbinaries: spectroscopicAstronomy &amp; Astrophysics
researchProduct

Ground deformation reveals the scale-invariant conduit dynamics driving explosive basaltic eruptions

2021

The mild activity of basaltic volcanoes is punctuated by violent explosive eruptions that occur without obvious precursors. Modelling the source processes of these sudden blasts is challenging. Here, we use two decades of ground deformation (tilt) records from Stromboli volcano to shed light, with unprecedented detail, on the short-term (minute-scale) conduit processes that drive such violent volcanic eruptions. We find that explosive eruptions, with source parameters spanning seven orders of magnitude, all share a common pre-blast ground inflation trend. We explain this exponential inflation using a model in which pressure build-up is caused by the rapid expansion of volatile-rich magma ri…

010504 meteorology & atmospheric sciencesExplosive materialScienceGeneral Physics and AstronomyMagnitude (mathematics)VolcanologyDeformation (meteorology)010502 geochemistry & geophysics01 natural sciencestiltGeneral Biochemistry Genetics and Molecular BiologyArticlePhysics::Geophysicsground deformationElectrical conduitOrders of magnitude (specific energy)ground deformation conduit dynamics early warningAstrophysics::Solar and Stellar AstrophysicsStromboli0105 earth and related environmental sciencesgeographyMultidisciplinarygeography.geographical_feature_categoryExplosive eruptionQGeneral ChemistryGeophysicsVolcanoMagmaSeismologyGeologyNature Communications
researchProduct

Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere

2017

S. Jafarzadeh et. al.

010504 meteorology & atmospheric sciencesExtrapolationFOS: Physical scienceschromosphere [Sun]Field strengthAstrophysicsDense forest01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsChromosphereSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar observatorySun: chromosphereAstronomy and AstrophysicsMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

Plasma sloshing in pulse-heated solar and stellar coronal loops

2016

There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here hydrodynamic loop modeling shows that several large amplitude oscillations (~ 20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter that the sound crossing time of the flaring loop. The reason is that the plasma has not enough time to reach pressure equilibrium during the heating and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these os…

010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesstars: coronaePhysicsSolar flareAstronomy and AstrophysicsPlasmaCoronal loopLight curvePulse (physics)AmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physicsstars: flareMagnetohydrodynamicsFlare
researchProduct

Morphological Properties of Slender Ca ${\rm{II}}$ H Fibrils Observed by Sunrise II

2017

R. Gafeira et. al.

010504 meteorology & atmospheric sciencesFOS: Physical scienceschromosphere [Sun]AstrophysicsFibrilCurvature01 natural sciencesSponge spiculeObservatory0103 physical sciencesHigh spatial resolutionSunriseTechniques: imaging spectroscopySun: magnetic fields010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)Physicsimaging spectroscopy [Techniques]Sun: chromosphereAstronomy and Astrophysicsmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceThe Astrophysical Journal Supplement Series
researchProduct

Bright Hot Impacts by Erupted Fragments Falling Back on the Sun: Magnetic Channelling

2016

Dense plasma fragments were observed to fall back on the solar surface by the Solar Dynamics Observatory after an eruption on 7 June 2011, producing strong EUV brightenings. Previous studies investigated impacts in regions of weak magnetic field. Here we model the $\sim~300$ km/s impact of fragments channelled by the magnetic field close to active regions. In the observations, the magnetic channel brightens before the fragment impact. We use a 3D-MHD model of spherical blobs downfalling in a magnetized atmosphere. The blob parameters are constrained from the observation. We run numerical simulations with different ambient density and magnetic field intensity. We compare the model emission i…

010504 meteorology & atmospheric sciencesField (physics)FOS: Physical sciencesAstrophysics01 natural sciencesAtmosphereSettore FIS/05 - Astronomia E AstrofisicaSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressureSun: magnetic field010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsSun: UV radiation Supporting material: animationPlasmaCoronal loopAstronomy and AstrophysicRam pressureMagnetic fieldStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physics
researchProduct