Search results for "Solid-state physics"

showing 2 items of 112 documents

Ge quantum well plasmon-enhanced quantum confined Stark effect modulator

2014

ABSTRACTWe theoretically and experimentally investigate a novel modulation concept on silicon (Si) based on the combination of quantum confinement and plasmon enhancement effects. We experimentally study the suitability of Ge/SiGe quantum wells (QWs) on Si as the active material for a plasmon-enhanced optical modulator. We demonstrate that in QW structures absorption and modulation of light with transverse magnetic (TM) polarization are greatly enhanced due to favorable selection rules. Later, we theoretically study the plasmon propagation at the metal-Ge/SiGe QW interface. We design a novel Ge/SiGe QW structure that allows maximized overlap between the plasmonic mode and the underlying Ge/…

optical propertiesMaterials scienceoptical; optical properties; optoelectronic; Materials Science (all); Condensed Matter Physics; Mechanical Engineering; Mechanics of MaterialsSolid-state physicsCondensed matter physicsMechanical EngineeringQuantum-confined Stark effectPhysics::OpticsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPolarization (waves)Condensed Matter PhysicsQuantum technologyOptical modulatorQuantum dotMechanics of MaterialsopticalMaterials Science (all)optoelectronicQuantum wellPlasmon
researchProduct

Spin-lattice relaxation of deuterated methyl groups: Implications of the pauli principle

1999

The high-field spin-lattice relaxation of deuterated methyl groups undergoing rotational tunneling is investigated theoretically. It is found that for systems showing a tunneling frequency comparable to accessible Larmor frequencies the relaxation to equilibrium of the Zeeman energy does not follow a simple exponential time dependence even in powdered samples due to a finite coupling to the relaxation of the tunneling system. This finding contrasts to the high-temperature behavior of reorienting methyl groups which undergo simple exponential relaxation. The nonexponentiality has its origin in the statistical coupling of the three deuteron spins due to the Pauli principle.

symbols.namesakePauli exclusion principleDeuteriumCondensed matter physicsSolid-state physicsSpinsChemistrysymbolsSpin–lattice relaxationRelaxation (physics)Zeeman energyAtomic and Molecular Physics and OpticsQuantum tunnellingApplied Magnetic Resonance
researchProduct