Search results for "Spectrometers"

showing 9 items of 29 documents

The SPEDE Spectrometer: Combined In-Beam γ-ray and Conversion Electron Spectroscopy with Radioactive Ion Beams

2015

The SPEDE spectrometer [1] aims to combine a silicon detector, for the detection of electrons, with the MINIBALL γ-ray detection array for in-beam studies employing radioactive ion beams at the HIE-ISOLDE facility at CERN. The setup will be primarily used for octupole collectivity [2] and shape coexistence studies [3, 4] in Coulomb excitation experiments. In the shape coexistence cases the transitions between states of the same spin and parity have enhanced E0 strength [5]. Additionally the 0→0 transitions, typically present in nuclei exhibiting shape coexistence [6], can only occur via E0 transitions, i.e. via internal conversion electron emission.

Radioactive ion beamsPhysicsLarge Hadron ColliderSpectrometerta114Physics::Instrumentation and DetectorsParity (physics)Coulomb excitationElectronElectron spectroscopyPhysics::Accelerator PhysicsSilicon detectorAtomic physicsconversion electron spectrometersNuclear Experiment
researchProduct

The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

2014

“The Hot and Energetic Universe” is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called “Integral field spectroscopy”, by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5’ in diameter) with an angular resolution of 5” and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy …

SimulationsSiliconWarm–hot intergalactic mediumField of viewOrbital mechanicsOpticsField spectroscopyGalactic astronomyX-raysElectronicAngular resolutionOptical and Magnetic MaterialsElectrical and Electronic EngineeringAnticoincidenceImage resolutionSpectroscopyPhysicsSpatial resolutionEquipment and servicesSpectrometerSpectrometersbusiness.industrySensorsApplied MathematicsDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsATHENAAnticoincidence; ATHENA; Cryogenic detectors; TES; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringCryogenic detectorsTransition edge sensorbusinessTES
researchProduct

Deconvolution of Multiple Spectral Lines Shapes by Means of Tikhonov’s Regularization Method

2013

We present deconvolution of multiple narrow Zeeman split Hg lines, emitted from Hg/Xe micro-size capillary and measured by the Fourier Transform spectrometer. The ill-posed inverse problem was solved using the Tikhonov& rsquo;s regularization method.

Tikhonov regularizationsymbols.namesakeZeeman effectFourier transform spectrometersAnalytical chemistrysymbolsDeconvolutionInverse problemRegularization (mathematics)Spectral lineMathematicsMagnetic fieldComputational physicsImaging and Applied Optics
researchProduct

EDGE: explorer of diffuse emission and gamma-ray burst explosions

2009

How structures on various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE will trace the cosmic history of the baryons from the early generations of massive star by Gamma-Ray Burst (GRB) explosions, through the period of cluster formation, down to very low redshifts, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (Warm Hot Intragalactic Medium: WHIM). In addition EDGE, with its unprecedented observational capabilities, will provide key results on several other topics. The science is feasible with a medium class mission …

Vision[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Warm–hot intergalactic mediumAstrophysicsAstrophysics7. Clean energy01 natural sciencesCosmologySettore FIS/05 - Astronomia E AstrofisicaIntergalactic MediumWarm-Hot Intergalactic MediumX-rays Cosmology Clusters Gamma-ray bursts Warm-hot intergalactic medium Missions010303 astronomy & astrophysicsX-ray telescopesX-rays; Cosmology; Clusters; Gamma-ray bursts; Warm&ndash; hot intergalactic medium; MissionsPhysicsEquipment and servicesSatellite MissionSpectrometersAstrophysics (astro-ph)X-rays Cosmology Clusters Gamma-ray bursts Warm– hot intergalactic medium MissionsTemperatureAstrophysics::Instrumentation and Methods for AstrophysicsCosmologyGamma-ray burstsCosmic VisionSpectral resolutionGalaxy ClustersAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesWarm&ndashAstrophysics::Cosmology and Extragalactic AstrophysicsMissionshot intergalactic mediumAbsorptionNO010309 opticsX-rayClustersWarm–hot intergalactic mediumGalaxy groups and clusters0103 physical sciencesX-raysGalaxy groups and clustersImaging systems010306 general physicsGamma-ray burstWarm&amp;ndashGalaxy clusterSpatial resolutionSensorsAstronomyX-rays clusters Gamma-Ray Bursts Warm-Hot Intergalactic Medium missionsAstronomy and AstrophysicsGalaxyRedshiftCluster13. Climate actionSpace and Planetary ScienceGamma-ray burstOptics for EUV, X-Ray, and Gamma-Ray Astronomy III. Edited by O'Dell, Stephen L.; Pareschi, Giovanni. Proceedings of the SPIE
researchProduct

Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2

2019

The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas fac…

Wire chambers (MWPCdrift tube13000 GeV-cmsPhysics::Instrumentation and DetectorsmuonsTracking (particle physics)01 natural sciences030218 nuclear medicine & medical imagingHigh Energy Physics - ExperimentSubatomär fysikMWPCHigh Energy Physics - Experiment (hep-ex)Gaseous detectors0302 clinical medicineWire chambersDrift tubesSubatomic Physicsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]tracking detectorProportional chambersmomentum resolutionInstrumentationImage resolutionMathematical Physicsdrift tubesPhysicsLarge Hadron ColliderDrift chamberstrack data analysisMuon spectrometersResolution (electron density)DetectorSettore FIS/01 - Fisica SperimentaleATLAS:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Wire chambers (MWPC Thin-gap chambers drift chambers drift tubes proportional chambers etc)medicine.anatomical_structureCERN LHC Collproportional chambers etc)Gaseous detectors; Muon spectrometers; Particle tracking detectors (gaseous detectors); Wire chambers (MWPC thin-gap chambers drift chambers drift tubes proportional chambers etc)MDT chambersWire chambers (MWPC)LHCcolliding beams [p p]Particle Physics - Experimentp p: scatteringspectrometer [muon]Ciências Naturais::Ciências Físicas530 PhysicsParticle tracking detectors (Gaseous detectors):Ciências Físicas [Ciências Naturais]610FOS: Physical sciencesdrift chamber [muon]gas [monitoring]programming03 medical and health sciencesOpticsAtlas (anatomy)Muon spectrometer0103 physical sciencesCalibrationmedicinemuon: drift chamberGaseous detectorddc:610drift chambersHigh Energy Physicsspatial resolutionMuonScience & Technology010308 nuclear & particles physicsbusiness.industryhep-ex:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Thin-gap chamberscalibrationmonitoring: gasExperimental High Energy Physicsbusinessp p: colliding beamsmuon: spectrometerexperimental results
researchProduct

Transition metal–saccharide chemistry: synthesis, characterization and solution stability studies of cis-dioxomolybdenum saccharide complexes

1998

Six cis-dioxomolybdenum(VI) complexes of simple monosaccharides (D-glucose, D-fructose, D-galactose, D-mannose, D-ribose and D-xylose) have been synthesized and characterized by a variety of analytical and spectral methods. Both the solution and solid-state studies have supported the presence of dimeric structures, formed through the cis-MoO2 moieties and the bridging saccharide units. Solution stability of these complexes as a function of time has also been addressed.

chemistry.chemical_classificationThermal AnalysisCircular dichroismSpectrometersStereochemistryCircular DichroismOrganic ChemistryMannoseFructoseGeneral MedicineXyloseBiochemistryAnalytical Chemistrychemistry.chemical_compoundchemistryTransition metalGalactoseRiboseOrganic chemistryMonosaccharideCyclic VoltammetryIndraStra Global
researchProduct

α-decay spectroscopy of the N = 130 isotones 218Ra and 220Th: Mitigation of α-particle energy summing with implanted nuclei

2019

An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones 218Ra (Z=88) and 220Th (Z=90) has been performed. The energies of the α particles emitted in the 218Ra→214Rn and 220Th→216Ra ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of 218Ra and 220Th have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, 214Rn and 216Ra, have been measured to be 259(3) ns and …

nuclear data analysis and compilationalpha decayydinfysiikkaspectrometers and spectroscopic techniques
researchProduct

Determination of β-decay ground state feeding of nuclei of importance for reactor applications

2020

In β-decay studies the determination of the decay probability to the ground state (g.s.) of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed γ-ray emission. In this work we revisit the 4πγ−β method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the β-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large g.s. branches. The method is…

nuclear reactorsHigh Energy Physics::Experimentbeta decayydinfysiikkanuclear structure and decaysspectrometers and spectroscopic techniques
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct