Search results for "Spectroscopic."

showing 10 items of 115 documents

Charge Sharing and Cross Talk Effects in High-Z and Wide-Bandgap Compound Semiconductor Pixel Detectors

2023

Intense research activities have been made in the development of high-Z and wide-bandgap compound semiconductor pixel detectors for the next generation X-ray and gamma ray spectroscopic imagers. Cadmium telluride (CdTe) and cadmium-zinc-telluride (CdZnTe or CZT) pixel detectors have shown impressive performance in X-ray and gamma ray detection from energies of few keV up to 1 MeV. Charge sharing and cross-talk phenomena represent the typical drawbacks in sub-millimeter pixel detectors, with severe distortions in both energy and spatial resolution. In this chapter, we review the effects of these phenomena on the response of CZT/CdTe pixel detectors, with particular emphasis on the current st…

X-ray and gamma ray detectorsCdZnTe detectorsCompound semiconductor detectorsCross talkSpectroscopic X-ray imagingSettore FIS/01 - Fisica SperimentaleCharge sharingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CdTe detectors
researchProduct

X‐Ray Photoelectron Spectroscopy

2021

X-ray photoelectron spectroscopy (XPS) is a spectroscopic technique in the family of electron spectroscopies, that is, those methods whose probe consists of electrons instead of photons. In the case of XPS, a soft, usually monochromatic X-ray causes the emission of electrons by means of the photoelectric effect. Differences in chemical potential and/or polarizability of the molecules can cause an alteration of the binding energy; in addition to photoelectrons, an ordinary XPS spectrum may also contain Auger electrons. In an XPS system, an electron gun is used to deliver a low-energy electron flux with a low current over the illuminated spot. In an XPS instrument, an ion gun may be used with…

X-ray photoelectron spectroscopyMaterials scienceX-ray photoelectron spectroscopyPhotoelectric effectSettore CHIM/03 - Chimica Generale E InorganicaAnalytical chemistryElectron spectroscopySpectroscopic techniqueAuger electronsBinding energySpectroscopy for Materials Characterization
researchProduct

Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters

2018

We propose a novel method to constrain turbulence and bulk motions in massive galaxies, groups and clusters, exploring both simulations and observations. As emerged in the recent picture of the top-down multiphase condensation, the hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (10^7 K) are perturbed by subsonic turbulence, warm (10^4 K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (< 100 K) raining in the core via chaotic cold accretion (CCA). We show all phases are tightly linked via the ensemble (wide-aperture) velocity dispersion along the line o…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics01 natural sciencesSpectral lineGalaxy groupAbsorption (logic)010303 astronomy & astrophysicsLine (formation)hydrodynamicPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Velocity dispersionPhysics - Fluid DynamicsComputational Physics (physics.comp-ph)active [galaxies]astro-ph.COspectroscopic [techniques]Astrophysics - High Energy Astrophysical PhenomenaPhysics - Computational PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics[ INFO ] Computer Science [cs]Cosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GAgalaxies: activeFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsISM [radio lines]0103 physical sciences[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]/dk/atira/pure/subjectarea/asjc/1900/1912[INFO]Computer Science [cs]Astrophysics::Galaxy Astrophysicsradio lines: ISM010308 nuclear & particles physicsMolecular cloudturbulenceFluid Dynamics (physics.flu-dyn)Astronomy and AstrophysicsAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesX-rays: galaxies: clusterGalaxyAccretion (astrophysics)[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]physics.flu-dynphysics.comp-phSpace and Planetary ScienceX-rays: galaxies: clustersAstrophysics of Galaxies (astro-ph.GA)hydrodynamics/dk/atira/pure/subjectarea/asjc/3100/3103galaxies: clusters [X-rays][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]techniques: spectroscopic
researchProduct

On the high resolution spectroscopy and intramolecular potential function of SO2

2009

Abstract Two weak stretching bands, ν 1  + 3 ν 3 and 3 ν 1  +  ν 3 , of the sulfur dioxide molecule have been recorded at high resolution and analyzed for the first time with using a Fourier transform Bruker IFS-120 HR interferometer. About 1000 transitions with J max .  = 51, K a max . = 16 , and 900 transitions with J max .  = 53, K a max . = 16 have been assigned to the bands ν 1  + 3 ν 3 and 3 ν 1  +  ν 3 , respectively. Analysis of the recorded spectra was made using the model of isolated vibrational states. Parameters obtained from the fit reproduce the initial experimental ro-vibrational energies with the rms deviation of 0.0006 and 0.0012 cm −1 for the bands, 3 ν 1  +  ν 3 and ν 1  …

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Analytical chemistryHigh resolution02 engineering and technology01 natural sciencesSpectral linesymbols.namesakeNuclear magnetic resonance[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]High-resolution spectra0103 physical sciencesMoleculePhysical and Theoretical ChemistrySpectroscopySpectroscopyPhysics010304 chemical physicsPotential functionFunction (mathematics)Spectroscopic parameters021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsInterferometryFourier transformSulfur dioxideIntramolecular forcesymbols0210 nano-technology
researchProduct

High resolution study of the six lowest doubly excited vibrational states of PH2D

2005

Abstract The five lowest doubly excited deformational vibrational bands ν 4  +  ν 6 , 2 ν 6 , ν 3  +  ν 4 , ν 3  +  ν 6 , and 2 ν 3 of PH 2 D have been recorded for the first time using a Bruker 120 HR interferometer with a resolution 0.0033 cm −1 and analysed. Some transitions belonging to a very weak band 2 ν 4 have been also assigned. From the fit 24 and 86, respectively, diagonal and resonance interaction parameters were obtained which reproduce 1089 upper energy levels obtained from more than 4600 assigned transitions with the rms deviation of 0.00059 cm −1 .

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]InfraredHigh resolution010402 general chemistry01 natural sciencesNuclear magnetic resonance[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesVibrational bandsHigh resolutionPhysical and Theoretical ChemistryInfrared spectrumSpectroscopy[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Physics010304 chemical physicsResolution (electron density)ResonanceSpectroscopic parametersPH2D moleculeAtomic and Molecular Physics and Optics0104 chemical sciences[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]FTIRExcited stateAtomic physics
researchProduct

Analysis of highly excited 'hot' bands in the SO2 molecule: ν2 + 3ν3 - ν2 and 2ν1 + ν2 + ν3 - ν2

2010

International audience; We set up a variational procedure of assignments of transitions and we applied it to the analysis very weak 'hot' bands, v(2) + 3v(3) - v(2) and 2v(1) + v(2) + v(3) - v(2), of the SO2 molecule. As the first step of the study, the 'cold' bands, 3v(3) and 2v(1) + v(3), are re-analysed and transitions belonging to those bands are assigned up to the values of quantum numbers J(max.) = 60, K-a(max.) = 19, and J(max.) = 69, K-a(max.) = 20 for the bands 3v(3) and 2v(1) + v(3), respectively. After 'cleaning' the experimental spectrum from transitions belonging to the 3v(3) and 2v(1) + v(3) bands, a variational procedure was used that allowed us to assign 230 and 115 transiti…

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]high-resolution spectraHIGH-RESOLUTION ANALYSISBiophysics02 engineering and technology01 natural sciences[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesMoleculespectroscopic parametersHigh resolution spectraPhysical and Theoretical ChemistrySpectroscopyLASER SPECTROSCOPYMolecular BiologyHigh resolution analysis010304 chemical physicsChemistryCOMBINATION BAND021001 nanoscience & nanotechnologyCondensed Matter PhysicsQuantum numberNU-3 BANDINTENSITIESSULFUR-DIOXIDEExcited stateLINE POSITIONSVIBRATIONAL-STATESsulphur dioxideEQUILIBRIUM ROTATIONAL-CONSTANTSAtomic physics0210 nano-technologySUBMILLIMETER-WAVE SPECTRUM
researchProduct

The STDS Dijon system : Present status and prospects.

2009

The Dijon spectroscopy group has developed powerful techniques based on group theory and tensorial formalism in order to analyze and simulate absorption and Raman spectra of molecules with various symmetries. Software packages and databases implementing these tools have been created [1]. Compared to the widely used spectroscopic databases (HITRAN, GEISA), these packages, with their XTDS common interface [2], are primarily devoted to the calculation of line parameters and spectra from a database of model parameters. Future developments include improved fitting algorithms, inclusion of C3v symmetric tops, rovibronic couplings, uncertainty estimates. Moreover, calculated line lists will be acc…

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Computational spectroscopymethanespectroscopic database[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
researchProduct

ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107-5240

2020

Context. The vast majority of the known stars of ultra low metallicity ([Fe=H] >-4:5) are known to be enhanced in carbon, and belong to the 'low-carbon band' (A(C) = log(C=H) + 12 7:6). It is generally, although not universally, accepted that this peculiar chemical composition reflects the chemical composition of the gas cloud out of which these stars were formed. The first ultra-metalpoor star discovered, HE 0107-5240, is also enhanced in carbon and belongs to the 'low-carbon band'. It has recently been claimed to be a long-period binary, based on radial velocity measurements. It has also been claimed that this binarity may explain its peculiar composition as being due to mass transfer fro…

[PHYS]Physics [physics]Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsBinary numberabundances [Galaxy]Astronomy and AstrophysicsAstrophysics01 natural sciencesGalactic haloEspressospectroscopic [Binaries]Space and Planetary Scienceabundances [Stars]0103 physical scienceshalo [Galaxy]Astrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Chemometric Tools to Point Out Benchmarks and Chromophores in Pigments through Spectroscopic Data Analyses

2021

Spectral preprocessing data and chemometric tools are analytical methods widely applied in several scientific contexts i.e., in archaeometric applications. A systematic classification of natural powdered pigments of organic and inorganic nature through Principal Component Analysis with a multi-instruments spectroscopic study is presented here. The methodology allows the access to elementary and molecular unique benchmarks to guide and speed up the identification of an unknown pigment and its recipe. This study is conducted on a set of 48 powdered pigments and tested on a real-case sample from the wall painting in S. Maria Delle Palate di Tusa (Messina, Italy). Four spectroscopic techniques …

ancient pigmentsspectroscopic techniquesOrganic ChemistryPharmaceutical Scienceancient pigments; spectroscopic techniques; chemometrics discrimination; elemental and molecular benchmarksArticlechemometrics discriminationAnalytical Chemistryelemental and molecular benchmarksQD241-441Chemistry (miscellaneous)Drug DiscoveryMolecular MedicinePhysical and Theoretical ChemistryMolecules; Volume 27; Issue 1; Pages: 163
researchProduct

HADES RV programme with HARPS-N at TNG: XII. The abundance signature of M dwarf stars with planets

2020

[Context] Most of our current knowledge on planet formation is still based on the analysis of main sequence, solar-type stars. Conversely, detailed chemical studies of large samples of M dwarfs hosting planets are still missing.

astro-ph.SRStellar massMetallicityFOS: Physical sciencesTechniques: spectroscopicStars: late-typeAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesspectroscopic [Techniques]Settore FIS/05 - Astronomia E AstrofisicaPrimary (astronomy)PlanetAbundance (ecology)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsEarth and Planetary Astrophysics (astro-ph.EP)Physics010308 nuclear & particles physicsStars: abundancesGiant planetAstronomy and Astrophysicsastro-ph.SR; astro-ph.SR; astro-ph.EPRadial velocityStarsPlanetary systemsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Scienceabundances [Stars]late-type [Stars]astro-ph.EPAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct