Search results for "Spin crossover"
showing 10 items of 379 documents
Fast detection of water and organic molecules by a change of color in an iron(II) microporous spin-crossover coordination polymer.
2012
Here we present a novel three-dimensional iron(II) spin-crossover porous coordination polymer based on the bis(1,2,4-triazol-4-yl)adamantane (tr(2)ad) ligand and the [Au(CN)(2)](-) metalloligand anions with the formula {Fe(3)(tr(2)ad)(4)[Au(CN)(2))](2)}[Au(CN)(2)](4)·G. The sorption/desorption of guest molecules, water, and five/six-membered-ring organic molecules is easily detectable because the guest-free and -loaded frameworks present drastically distinct coloration and spin-state configurations.
Macrocycle-Based Spin-Crossover Materials
2009
International audience; New iron(II) complexes of formula [Fe(L1)](BF(4))(2) (1) and [Fe(L2)](BF(4))(2) x H(2)O (2) (L1 = 1,7-bis(2'-pyridylmethyl)-1,4,7,10-tetraazacyclododecane; L2 = 1,8-bis(2'-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane) have been synthesized and characterized by infrared spectroscopy, variable-temperature single-crystal X-ray diffraction, and variable-temperature magnetic susceptibility measurements. The crystal structure determinations of 1 and 2 reveal in both cases discrete iron(II) monomeric structures in which the two functionalized tetraazamacrocycles (L1 and L2) act as hexadentate ligands; the iron(II) ions are coordinated with six nitrogen atoms: four from …
Cyanocarbanion-based spin-crossover materials: photocrystallographic and photomagnetic studies of a new iron(II) neutral chain
2010
International audience; A new iron(II) chain of formula [Fe(abpt)(2)(tcpd)] [1; (tcpd)(2-) = [C(10)N(6)](2-) = (C[C(CN)(2)](3))(2-) = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide anion, abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole] has been synthesized and characterized by IR spectroscopy, detailed variable-temperature single-crystal X-ray diffraction, magnetic and photomagnetic measurements. The crystal structure determination of 1 reveals a one-dimensional structural architecture in which the (tcpd)(2-) cyanocarbanion acts as a μ(2)-bridging ligand and the two abpt molecules act as chelating ligands. Detailed X-ray diffraction studies as a function of the temperature (293-10 K…
A Two-State Computational Investigation of Methane C-H and Ethane C-C Oxidative Addition to [CpM(PH3)]n+ (M=Co, Rh, Ir;n=0, 1)
2006
Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordinati…
Crystal structure of the coordination polymer [FeIII2{PtII(CN)4}3]
2015
[EN] The title complex, poly[dodeca--cyanido-diiron(III)triplatinum(II)], [FeIII2{PtII(CN)4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN)4] 2 anions (point group symmetry 2/m) bridging cationic [FeIIIPtII(CN)4] + 1 layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectiv…
Vibrational properties of 1D- and 3D polynuclear spin crossover Fe(II) urea-triazoles polymer chains and quantification of intrachain cooperativity
2020
Abstract The vibrational dynamics of the iron centres in 1D and 3D spin crossover Fe(II) 4-alkyl-urea triazole chains have been investigated by synchrotron based nuclear inelastic scattering. For the 1D system, the partial density of phonon states has been modelled with density functional theory methods. Furthermore, spin dependent iron ligand distances and vibrational modes were obtained. The previously introduced intramolecular cooperativity parameter H coop (Rackwitz et al, Phys. Chem. Chem. Phys. 2013, 15, 15450) has been determined to −31 kJ mol−1 for [Fe(n-Prtrzu)3(tosylate)2] and to +27 kJ mol−1 for [Fe(n-Prtrzu)3(BF4)2]. The change of sign in H coop is in line with the incomplete an…
Interplay between spin-crossover and luminescence in a multifunctional single crystal iron( ii ) complex: towards a new generation of molecular senso…
2019
Multifunctional mononuclear iron( ) complex coordinated with six phosphorescent ligands exhibiting correlated spin-crossover transition and enhanced fluorescence.
Heterobimetallic MOFs containing tetrathiocyanometallate building blocks: Pressure-induced spin crossover in the porous {Fe II(pz)[Pd II(SCN) 4]} 3D …
2012
Here we describe the synthesis, structure, and magnetic properties of two related coordination polymers made up of self-assembling Fe(II) ions, pyrazine (pz), and the tetrathiocyanopalladate anion. Compound {Fe(MeOH) 2[Pd(SCN) 4]}·pz (1a) is a two-dimensional coordination polymer where the Fe(II) ions are equatorially coordinated by the nitrogen atoms of four [Pd(SCN) 4] 2- anions, each of which connects four Fe(II) ions, forming corrugated layers {Fe[Pd(SCN) 4]} ∞. The coordination sphere of Fe(II) is completed by the oxygen atoms of two CH 3OH molecules. The layers stack one on top of each other in such a way that the included pz molecule establishes strong hydrogen bonds with the coordin…
Spin Cross-Over (SCO) Complex Based on Unsymmetrical Functionalized Triazacyclononane Ligand: Structural Characterization and Magnetic Properties
2019
International audience; The unsymmetrical ligand 1-(2-aminophenyl)-4,7-bis(pyridin-2-ylmethyl)-1,4,7-triazacyclononane (L6) has been prepared and characterized by NMR spectroscopy. The L6 ligand is based on the triazamacrocycle (tacn) ring that is functionalized by two flexible 2-pyridylmethyl and one rigid 2-aminophenyl groups. Reaction of this ligand with Fe(ClO4)2·xH2O led to the complex [Fe(L6)](ClO4)2 (1), which was characterized as the first Fe(II) complex based on the unsymmetrical N-functionalized tacn ligand. The crystal structure revealed a discrete monomeric [FeL6]2+ entity in which the unsymmetrical N-functionalized triazacyclononane molecule (L6) acts as hexadentate ligand. As …