Search results for "Spintronics"
showing 10 items of 231 documents
Reservoir Computing with Random Skyrmion Textures
2020
The Reservoir Computing (RC) paradigm posits that sufficiently complex physical systems can be used to massively simplify pattern recognition tasks and nonlinear signal prediction. This work demonstrates how random topological magnetic textures present sufficiently complex resistance responses for the implementation of RC as applied to A/C current pulses. In doing so, we stress how the applicability of this paradigm hinges on very general dynamical properties which are satisfied by a large class of physical systems where complexity can be put to computational use. By harnessing the complex resistance response exhibited by random magnetic skyrmion textures and using it to demonstrate pattern…
Antiferromagnetic Topological Insulator with Nonsymmorphic Protection in Two Dimensions
2019
The recent demonstration of topological states in antiferromagnets (AFMs) provides an exciting platform for exploring prominent physical phenomena and applications of antiferromagnetic spintronics. A famous example is the AFM topological insulator (TI) state, which, however, was still not observed in two dimensions. Using a tight-binding model and first-principles calculations, we show that, in contrast to previously observed AFM topological insulators in three dimensions, an AFM TI can emerge in two dimensions as a result of a nonsymmorphic symmetry that combines the twofold rotation symmetry and half-lattice translation. Based on the spin Chern number, Wannier charge centers, and gapless …
Anatomy of spin–orbit torques
2017
The use of time-resolved X-ray microscopy allows a direct visualization of the magnetization switching for nanomagnets under the effect of spin–orbit torques.
Lévy distributions and disorder in excitonic spectra.
2020
We study analytically the spectrum of excitons in disordered semiconductors like transition metal dichalcogenides, which are important for photovoltaic and spintronic applications. We show that ambient disorder exerts a strong influence on the exciton spectra. For example, in such a case, the wellknown degeneracy of the hydrogenic problem (related to Runge–Lenz vector conservation) is lifted so that the exciton energy starts to depend on both the principal quantum number n and orbital l. We model the disorder phenomenologically substituting the ordinary Laplacian in the corresponding Schro¨dinger equation by the fractional one with Le´vy index m, characterizing the degree of disorder. Our v…
Self-induced spin-orbit torques in metallic ferromagnets
2021
We present a phenomenological theory of spin-orbit torques in a metallic ferromagnet with spin-relaxing boundaries. The model is rooted in the coupled diffusion of charge and spin in the bulk of the ferromagnet, where we account for the anomalous Hall effects as well as the anisotropic magnetoresistance in the corresponding constitutive relations for both charge and spin sectors. The diffusion equations are supplemented with suitable boundary conditions reflecting the spin-sink capacity of the environment. In inversion-asymmetric heterostructures, the uncompensated spin accumulation exerts a dissipative torque on the order parameter, giving rise to a current-dependent linewidth in the ferro…
Route towards Dirac and Weyl antiferromagnetic spintronics (Phys. Status Solidi RRL 4/2017)
2017
Complex Terahertz and Direct Current Inverse Spin Hall Effect in YIG/Cu1-xIrx Bilayers Across a Wide Concentration Range
2018
We measure the inverse spin Hall effect of Cu1-xIrx thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We …
Route towards Dirac and Weyl antiferromagnetic spintronics
2017
Topological quantum matter and spintronics research have been developed to a large extent independently. In this Review we discuss a new role that the antiferromagnetic order has taken in combining topological matter and spintronics. This occurs due to the complex microscopic symmetries present in antiferromagnets that allow, e.g., for topological relativistic quasiparticles and the newly discovered N\'{e}el spin-orbit torques to coexist. We first introduce the concepts of topological semimetals and spin-orbitronics. Secondly, we explain the antiferromagnetic symmetries on a minimal Dirac semimetal model and the guiding role of $\textit{ab initio}$ calculations in predictions of examples of…
Spin Hall effects
2015
In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents. The associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not. This review provides a theoretical and experimental treatment of this subfield of spintronics, beginning with distinct microscopic mechanisms seen in ferromagnets and concluding with a discussion of optical-, transport-, and magnetization-dynamics-based experiments closely linked to the microscopic and phenomenological theories presented.
Magnetism-mediated transition between crystalline and higher-order topological phases in NpSb
2021
Merging the fields of topology and magnetism expands the scope of fundamental quantum phenomena with novel functionalities for topological spintronics enormously. Here, we theoretically demonstrate that ferromagnetism provides an efficient means to achieve a topological switching between crystalline and higher-order topological insulator phases in two dimensions. Using a tight-binding model and first-principles calculations, we identify layered NpSb as a long-awaited two-dimensional topological crystalline insulator with intrinsic ferromagnetic order with a band gap which is as large as 220 meV. We show that when ${\mathcal{M}}_{z}$ symmetry is preserved for the out of plane magnetization o…