Search results for "Splitting"
showing 10 items of 220 documents
A measurement of the gluon splitting rate into bb̄ pairs in hadronic Z decays
1998
Abstract A measurement of the fraction of hadronic Z decays in which a gluon splits into a b b pair, g b b , is presented using data collected by ALEPH from 1992 to 1995 at the Z resonance. The selection is based on four-jet events. Events are selected by means of topological cuts and a lifetime tag. The result is g b b =(2.77±0.42 (stat)±0.57 (syst))×10 −3 .
Quadrupole moments of radium isotopes from the 7p 2 P 3/2 hyperfine structure in Ra II
1988
The hyperfine structure and isotope shift of221–226Ra and212,214Ra have been measured in the ionic (Ra II) transition 7s 2 S 1/2–7p 2 P 3/2 (λ=381.4 nm). The method of on-line collinear fast-beam laser spectroscopy has been applied using frequency-doubling of cw dye laser radiation in an external ring cavity. The magnetic hyperfine fields are compared with semi-empirical and ab initio calculations. The analysis of the quadrupole splitting by the same method yields the following, improved values of spectroscopic quadrupole moments:Q s (221Ra)=1.978(7)b,Q s (223Ra)=1.254(3)b and the reanalyzed valuesQ s (209Ra)=0.40(2)b,Q s (211Ra)=0.48(2)b,Q s (227Ra)=1.58(3)b,Q s (229Ra)=3.09(4)b with an ad…
Field Dependence of the Electron Spin Relaxation in Quantum Dots
2005
Interaction of the electron spin with local elastic twists due to transverse phonons has been studied. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides parameter-free lower bound on the electron spin relaxation in quantum dots.
Pulsed-field studies of the magnetization reversal in molecular nanomagnets
2004
We report experimental studies of crystals of Mn12 molecular magnetic clusters in pulsed magnetic fields with sweep rates up to 4x10^3 T/s. The steps in the magnetization curve are observed at fields that are shifted with respect to the resonant field values. The shift systematically increases as the rate of the field sweep goes up. These data are consistent with the theory of the collective dipolar relaxation in molecular magnets.
Iodine on a magnetized iron film evidence for a magnetic coupling
1993
Abstract Spin-resolved photoelectron spectra of iodine chemisorbed on a magnetized iron (110) surface have been taken using unpolarized VUV light. The partial spin spectra reveal the I 5p x and 5p z signals being split by up to 0.35 eV. This exchange splitting occurs due to hybridization of adsorbate and substrate bands as a consequence of the chemical bond of the halogen atoms to the iron surface.
Elimination of unitarily nonequivalent vacua in supersymmetric grand unified theories by gravity
1983
Abstract In globally supersymmetric grand unified theories, there may be unitarily nonequivalent vacua which are not present in ordinary theories, reflecting the invariance of the Higgs potential under the complex extension of the gauge group. We show that such vacua are eliminated in the presence of N = 1 supergravity coupling, if local supersymmetry is broken and the costomological constant vanishes.
Production and decays of supersymmetric Higgs bosons in spontaneously brokenRparity
2005
We study the mass spectra, production and decay properties of the lightest supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously broken R-parity (SBRP). We compare the resulting mass spectra with expectations of the Minimal Supersymmetric Standard Model (MSSM), stressing that the model obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how the presence of the additional scalar singlet states affects the Higgs production cross sections, both for the Bjorken process and the "associated production". The main phenomenological novelty with respect to the MSSM comes from the fact that the spontaneous breaking of lepton number leads to the existence of…
The Electric Field Gradient and the Quadrupole Interaction
1984
The Mossbauer effect has become a popular method in analytical chemistry. In contrast to other techniques such as x-ray spectroscopy, NMR, EPR, and MCD where highly sophisticated evaluation procedures are applied to obtain reliable information on the chemical compound, the Mossbauer effect is generally used on a low level concerning the evaluation of quadrupole split spectra. This procedure on a low level is favored by the structure of the spectra especially the simple doublet of the 3/2 → 1/2 nuclear transitions in paramagnetic and diamagnetic compounds. The separation of the two absorption lines, the quadrupole splitting ΔE Q and the center of the two lines, the isomer shift, are easily d…
The magnetic moment anomaly of the electron bound in hydrogen-like oxygen16O7
2003
The measurement of the g-factor of the electron bound in a hydrogen-like ion is a high-accuracy test of the theory of quantum electrodynamics (QED) in strong fields. Here we report on the measurement of the g-factor of the bound electron in hydrogen-like oxygen (16O7+). In our experiment a single highly charged ion is stored in a Penning trap. The electronic spin state of the ion is monitored via the continuous Stern?Gerlach effect in a quantum non-demolition measurement. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g-factor of the bound electron is obtained by varying the micro…
Some Special Applications
2010
We have learned from the preceding chapters that the chemical and physical state of a Mossbauer atom in any kind of solid material can be characterized by way of the hyperfine interactions which manifest themselves in the Mossbauer spectrum by the isomer shift and, where relevant, electric quadrupole and/or magnetic dipole splitting of the resonance lines. On the basis of all the parameters obtainable from a Mossbauer spectrum, it is, in most cases, possible to identify unambiguously one or more chemical species of a given Mossbauer atom occurring in the same material.