6533b7d4fe1ef96bd12631f6
RESEARCH PRODUCT
Quadrupole moments of radium isotopes from the 7p 2 P 3/2 hyperfine structure in Ra II
Walter NeuE. ArnoldErnst W. OttenH. J. KlugeG. UlmKlaus WendtGerd PasslerB. FrickeRainer Neugartsubject
PhysicsAb initio quantum chemistry methodsExcited stateQuadrupoleNuclear Physics - ExperimentQuadrupole splittingAtomic physicsGround stateSpectroscopyHyperfine structureAtomic and Molecular Physics and OpticsMolecular electronic transitiondescription
The hyperfine structure and isotope shift of221–226Ra and212,214Ra have been measured in the ionic (Ra II) transition 7s 2 S 1/2–7p 2 P 3/2 (λ=381.4 nm). The method of on-line collinear fast-beam laser spectroscopy has been applied using frequency-doubling of cw dye laser radiation in an external ring cavity. The magnetic hyperfine fields are compared with semi-empirical and ab initio calculations. The analysis of the quadrupole splitting by the same method yields the following, improved values of spectroscopic quadrupole moments:Q s (221Ra)=1.978(7)b,Q s (223Ra)=1.254(3)b and the reanalyzed valuesQ s (209Ra)=0.40(2)b,Q s (211Ra)=0.48(2)b,Q s (227Ra)=1.58(3)b,Q s (229Ra)=3.09(4)b with an additional scaling uncertainty of ±5%. Furthermore, theJ-dependence of the isotope shift is analyzed in both Ra II transitions connecting the 7s 2 S 1/2 ground state with the first excited doublet 7p 2 P 1/2 and 7p 2 P 3/2.
year | journal | country | edition | language |
---|---|---|---|---|
1988-06-01 | Zeitschrift f�r Physik D Atoms, Molecules and Clusters |