0000000000011053

AUTHOR

Rainer Neugart

Fast-beam laser spectroscopy of neutron-rich barium isotopes

research product

Systematic measurements of the bohr-weisskpf effect at isolde

The hyperfine anomaly gives an insight into the coupling of spin and orbital magnetic moments in the nucleus. More precisely, the nuclear magnetization is expressible through the nuclear wave functions with which is tested not only the magnetic moment operator, but also the tensor product [s×C2]1. The experiment can then be expected to be of value in testing the nuclear structure theory. The greatest value of these measurements is gained when these are made systematically over a large number of isotopes. We propose to initiate a program at ISOLDE to measure the hyperfine anomaly systematically in the heavy alkali elements. The experimental setup to achieve, in particular, a precise measurem…

research product

Optical polarization of neutron-rich sodium isotopes and β-NMR measurements of quadrupole moments

The nuclear quadrupole moments of neutron-rich sodium isotopes are being investigated with the help of in-beam polarization by optical pumping in combination with $\beta$-NMR techniques. First measurements have yielded the quadrupole splittings of NMR signals in the lattice of LiNbO$_{3}$ for the isotopes $^{26}$Na, $^{27}$Na and $^{28}$Na. Interaction constants and ratios of the electric quadrupole moments are derived. In view of future experiments, $\beta$-decay asymmetries for the sequence of isotopes up to the $N$=20 neutron shell closure, $^{26-31}$Na, have been measured.

research product

Atomic beam magnetic resonance apparatus for systematic measurement of hyperfine structure anomalies (Bohr-Weisskopf effect)

Abstract An atomic beam magnetic resonance (ABMR) apparatus has been constructed at Orsay, and has been installed at the CERN PS Booster ISOLDE mass separator facility for “on-line” work with radioactive isotopes in a program to measure hyperfine structure anomalies (the Bohr-Weisskopf effect) over long isotopic chains. The hfs anomalies result from the effect of the spatial distribution of the nuclear magnetization on the atomic hfs interaction. Constructional details of the system are described: emphasis is placed on the measurement of nuclear g-factors by a triple resonance, laser state selected, ABMR method. A precision better than 10−4 for gI values has been obtained in stable atomic b…

research product

Evidence for Increased neutron and proton excitations between 51−63 Mn

The hyperfine structures of the odd-even 51−63Mnatoms (N=26 −38) were measured using bunched beam collinear laser spectroscopy at ISOLDE, CERN. The extracted spins and magnetic dipole moments have been compared to large-scale shell-model calculations using different model spaces and effective interactions. In the case of 61,63Mn, the results show the increasing importance of neutron excitations across the N=40subshell closure, and of proton excitations across the Z=28shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. publisher: Els…

research product

Search for forbidden?-decays of the drip line nucleus12Be

Beta-coincidentγ-rays have been measured from implanted pure samples of12Be separated at the LISE3 spectrometer at GANIL. An intensity of 0.040(26) % can be estimated for the branching ratio of the isospin forbidden pure-Fermi transition to the 0+ excited state of12B and of 0.008(6)% of the transition to the 1−1 excited state. Both are taken to represent upper limits. The half-life has been re-measured to be 26.1(2.4) ms.

research product

Relativistic J-dependence of the isotope shift in the 6s-6p doublet of Ba II

The collinear laser-ion beam technique has been used to measure the isotope shift and hyperfine structure in the 6s-6p doublet (4,934A, 4,554A) of Ba II for all seven stable isotopes. The influence of the excited2P1/2 and2P3/2 states on the field shift leads to a difference of 2.5(3)% in the electronicF factors. The specific mass shifts differ by {A′-A} 2.2(3) MHz which corresponds to about 12% of the normal mass shift.

research product

Evaluation of the magnetic moments of radium isotopes

Using the relativistic linked cluster many-body perturbation procedure we have obtained the hyperfine field at the nucleus of the Ra+ ion in the2S1/2 ground state. There is good agreement between the calculated magnetic moment of213Ra and the results of a recent Zeeman measurement by the collinear laser beam technique. Detailed comparison is carried out between our result and earlier ones.

research product

Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

Collinear laser spectroscopy was performed on Zn (Z=30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (&

research product

Measurement of the Spin and Magnetic Moment ofMg31: Evidence for a Strongly Deformed Intruder Ground State

Unambiguous values of the spin and magnetic moment of $^{31}\mathrm{M}\mathrm{g}$ are obtained by combining the results of a hyperfine-structure measurement and a $\ensuremath{\beta}$-NMR measurement, both performed with an optically polarized ion beam. With a measured nuclear $g$ factor and spin $I=1/2$, the magnetic moment $\ensuremath{\mu}(^{31}\mathrm{M}\mathrm{g})=\ensuremath{-}0.88355(15){\ensuremath{\mu}}_{N}$ is deduced. A revised level scheme of $^{31}\mathrm{M}\mathrm{g}$ ($Z=12$, $N=19$) with ground state spin/parity ${I}^{\ensuremath{\pi}}=1/{2}^{+}$ is presented, revealing the coexistence of 1p-1h and 2p-2h intruder states below 500 keV. Advanced shell-model calculations and th…

research product

Collinear fast-beam laser spectroscopy

The progress in atomic and molecular spectroscopy has gone hand in hand with improvements of the resolution. Before the tunable narrow-band lasers led to the invention of Doppler-free techniques, spectral lines from cooled hollow-cathode discharges(1) had typical widths larger than 300 MHz, and high resolution was achieved only in rf spectroscopy, e.g., within hyperfine structure multiplets, by the classical techniques like atomic beam magnetic resonance,(2) optical pumρing,(3) or double resonance.(4) While the Doppler broadening $$\delta {v_D} = {v_0}{\left( {{{8kT{\rm{ }}\ln {\rm{ 2}}} \over {m{c^2}}}} \right)^{1/2}}$$ (1) is negligible for resonance frequencies v 0 in the rf regime, the …

research product

Nuclear Charge Radius ofBe12

The nuclear charge radius of $^{12}\mathrm{Be}$ was precisely determined using the technique of collinear laser spectroscopy on the $2{s}_{1/2}\ensuremath{\rightarrow}2{p}_{1/2,3/2}$ transition in the ${\mathrm{Be}}^{+}$ ion. The mean square charge radius increases from $^{10}\mathrm{Be}$ to $^{12}\mathrm{Be}$ by $\ensuremath{\delta}⟨{r}_{c}^{2}{⟩}^{10,12}=0.69(5)\text{ }\text{ }{\mathrm{fm}}^{2}$ compared to $\ensuremath{\delta}⟨{r}_{c}^{2}{⟩}^{10,11}=0.49(5)\text{ }\text{ }{\mathrm{fm}}^{2}$ for the one-neutron halo isotope $^{11}\mathrm{Be}$. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}\mathrm{Be}$. Th…

research product

Quadrupole interaction of $^{8}$Li and $^{9}$Li in LiNbO$_{3}$ and the quadrupole moment of $^{9}$Li

The quadrupole interaction of nuclear spin polarized8Li (I=2) and9Li (I=3/2) in LiNbO3 has been studied at room temperature. The polarization was achieved by optical pumping of a fast atomic beam with circularly polarized laser light. The atoms were implanted into a hexagonal LiNbO3 single crystal and the quadrupole splitting ofβ-NMR spectra was measured. A ratio of ¦Q(9Li)/Q(8Li)¦=0.88(4) for the nuclear quadrupole moments was deduced, yielding a new value of ¦Q(9Li)¦=25.3 (9) mb for the quadrupole moment of9Li.

research product

Progress in Atomic Physics Experiments on Nuclear Properties

The measurement of nuclear properties by atomic physics methods has influenced a great deal of our present understanding of the nuclear structure. This started from the discovery of the nuclear spin and magnetic moment, the observation of isotope shifts related to nuclear radii, and the resolution of quadrupole interaction effects in the hyperfine structures. The invention and improvement of many spectroscopic techniques has led to a comprehensive knowledge of the electromagnetic ground-state properties of all stable and many radioactive nuclides. On the other hand, the atomic and thus the nuclear masses of stable isotopes were determined very precisely by electromagnetic mass spectrometry.…

research product

Nuclear moments of strongly deformed strontium isotopes

Nuclear spins, moments and mean square charge radii of78–100Sr have been obtained by fast ion-beam collinear laserspectroscopy. The experiments performed at ISOLDE have been extended to include99Sr, measured by a non-optical detection scheme with a two-step optical pumping sequence. The results for the strongly deformed isotopes are discussed in the frame of the particle-plus-deformed core model.

research product

Quadrupole moments of radium isotopes from the 7p 2 P 3/2 hyperfine structure in Ra II

The hyperfine structure and isotope shift of221–226Ra and212,214Ra have been measured in the ionic (Ra II) transition 7s 2 S 1/2–7p 2 P 3/2 (λ=381.4 nm). The method of on-line collinear fast-beam laser spectroscopy has been applied using frequency-doubling of cw dye laser radiation in an external ring cavity. The magnetic hyperfine fields are compared with semi-empirical and ab initio calculations. The analysis of the quadrupole splitting by the same method yields the following, improved values of spectroscopic quadrupole moments:Q s (221Ra)=1.978(7)b,Q s (223Ra)=1.254(3)b and the reanalyzed valuesQ s (209Ra)=0.40(2)b,Q s (211Ra)=0.48(2)b,Q s (227Ra)=1.58(3)b,Q s (229Ra)=3.09(4)b with an ad…

research product

Nuclear moments of neon isotopes in the range fromNe17at the proton drip line to neutron-richNe25

Nuclear moments of odd-A neon isotopes in the range 17 ≤ A ≤ 25 have been determined from optical hyperfine structures measured by collinear fast-beam laser spectroscopy. The magnetic dipole moments of 17 Ne, 23 Ne and 25 Ne, as well as the electric quadrupole moment of 23 Ne are either reported for the first time or improved considerably. The measurements also decide for a 1/2 + ground state of 25 Ne. The behavior of the magnetic moments of the proton drip-line nucleus 17 Ne and its mirror partner 17 N suggests isospin symmetry. Thus, no clear indication of an anomalous nuclear structure is found for 17 Ne. The magnetic moments of the investigated nuclei are discussed in a shell-model appr…

research product

Nuclear orientation of radon isotopes by spin exchange optical pumping

This paper reports the first demonstration of nuclear orientation of radon atoms. The method employed was spin exchange with potassium atoms polarized by optical pumping. The radon isotopes were produced at the ISOLDE isotope separator of CERN. The nuclear alignment of /sup 209/Rn and /sup 223/Rn has been measured by observation of ..gamma..-ray anisotropies and the magnetic dipole moment for /sup 209/Rn has been measured by the nuclear-magnetic-resonance method to be chemically bond..mu..chemically bond = 0.838 81(39)..mu../sub N/.

research product

Nuclear mean-square charge radii of63,64,66,68−82Ga nuclei: No anomalous behavior atN=32

Collinear laser spectroscopy was performed on the ${}^{63,64,66,68\ensuremath{-}82}$Ga isotopes with neutron numbers from $N=32$ to $N=51$. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of ${}^{63,70}$Ga, measured on an atomic transition in the neutral atom. The ground-state spin of ${}^{63}$Ga is determined to be $I=3/2$. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates …

research product

Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were…

research product

High-resolution laser spectroscopy of Al27–32

Hyperfine spectra of $^\text{27-32}$Al ($Z=13$) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the $3s^23p\ ^2\text{P}^\text{o} _{3/2}\rightarrow 3s^24s\ ^2\text{S}_{1/2}$ atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of $^{29}$Al and electric quadrupole moments of $^{29,30}$Al. A potentially reduced charge radius at $N=19$ may suggest an effect of the $N=20$ shell closure, which is visible in the Al chain, contrary to other isotopic chains in the $sd$ shell. The experimental results are compared to theoretical calculations in…

research product

Collinear Laser Spectroscopy on Fast Atomic Beams

In collinear geometry we have observed laser-excited, narrow resonances in fast beams of Na and Cs atoms obtained from ion beams by charge transfer collisions. Being very sensitive, the method is suited for measuring isotope shifts and hyperfine structure of isotopes far from stability provided by on-line mass separators. It may be used furthermore to study inelastic charge transfer from the energy-loss spectrum of the Doppler-shifted lines.

research product

Narrowed optical lines observed in laser method for use with accelerated beams

research product

Spin, moments, and mean square nuclear charge radius ofSr77

The neutron deficient $^{77}\mathrm{Sr}$ nucleus was studied by fast ion beam collinear laser spectroscopy with a detection scheme based on optical pumping, state selective neutralization, and atom counting. From the measured hyperfine splitting and isotope shift of the Sr II transition 5s $^{2}$${\mathit{S}}_{1/2}$\ensuremath{\rightarrow}5p $^{2}$${\mathit{P}}_{3/2}$ the nuclear spin I=5/2, the nuclear moments \ensuremath{\mu}=-0.348(4)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$, ${\mathit{Q}}_{\mathit{s}}$=1.40(11) b, and the change in mean square charge radius \ensuremath{\delta}〈${\mathit{r}}^{2}$${\mathrm{〉}}^{88,77}$=0.248(12) ${\mathrm{fm}}^{2}$ were deduced. These ground-state proper…

research product

Laser spectroscopy measurement of isotope shifts and nuclear moments of short-lived neon isotopes

Within the scope of a laser spectroscopy study of nuclear structure in the sd shell we are measuring nuclear moments and isotope shifts of neon isotopes. An ultra-sensitive variant of collinear laser spectroscopy [1, 2] is applied to a neutralized fast beam from ISOLDE (CERN). The non-optical detection is based on optical pumping, state selective collisional ionization and β-activity counting. This method gives access in particular to the short-lived isotopes in the extended chain of 17–26,28Ne.

research product

On the odd-even staggering of mean-square charge radii in the light krypton and strontium region

Recently isotope shifts of $^{72,74-96}$Kr and $^{77-100}$Sr have been measured at the ISOLDE/ CERN mass separator facility by collinear laser spectroscopy. The deduced changes in mean square charge radii reveal sharp transitions in nuclear shape from spherical near the magic neutron number N=50 towards strongly deformed for both the neutron deficient and neutron rich isotopes far from stability. The mean square charge radii of the neutron deficient isotopes exhibit a sign change of the odd-even staggering (OES), i.e. below the neutron number N=46 the radius is systematically larger for the odd-N nuclei than for their even-N neighbours. This is in contrast to the situation of normal OES whi…

research product

Spins and Magnetic Moments ofK49andK51: Establishing the1/2+and3/2+Level Ordering BeyondN=28

The ground-state spins and magnetic moments of $^{49,51}\mathrm{K}$ have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE CERN. For $^{49}\mathrm{K}$ a ground-state spin $I=1/2$ was firmly established. The observed hyperfine structure of $^{51}\mathrm{K}$ requires a spin $Ig1/2$ and strongly suggests $I=3/2$. From its magnetic moment $\ensuremath{\mu}(^{51}\mathrm{K})=+0.5129(22){\ensuremath{\mu}}_{N}$ a spin-parity ${I}^{\ensuremath{\pi}}=3/{2}^{+}$ with a dominant $\ensuremath{\pi}1{d}_{3/2}^{\ensuremath{-}1}$ hole configuration was deduced. This establishes for the first time the reinversion of the single-particle levels and illustrates the prominen…

research product

An ion cooler-buncher for high-sensitivity collinear laser spectroscopy at ISOLDE

International audience; A gas-filled segmented linear Paul trap has been installed at the focal plane of the high-resolution separator (HRS) at CERN-ISOLDE. As well as providing beams with a reduced transverse emittance, this device is also able to accumulate the ions and release the sample in bunches with a well-defined time structure. This has recently permitted collinear laser spectroscopy with stable and radioactive bunched beams to be demonstrated at ISOLDE. Surface-ionized 39, 44, 46K and 85Rb beams were accelerated to 30keV, mass separated and injected into the trap for subsequent extraction and delivery to the laser setup. The ions were neutralized in a charge exchange cell and exci…

research product

Nuclear spin and moments of 73Kr and odd—even staggering in the radii of light krypton isotopes

Nuclear spectroscopy measurements in the region of neutron-deficient krypton isotopes have indicated that pronounced shape changes and instabilities occur when the nuclei approach the N = Z line. This is confirmed by isotope shift measurements on krypton [1] yielding an increasing inverted odd—even staggering of the radii [2] from 82Kr (N = 46) to 74Kr (N = 38). We have now completed the published data by measuring the hyperfine structure and isotope shift of 73Kr. This is also interesting in context with a recent β-decay study [3]. The feeding of excited states in 73Br gave strong arguments for the ground-state spin and parity of 73Kr to be 3/2−, in contrast to the adopted assignment of 5/…

research product

Nuclear Spins and Magnetic Moments ofCu71,73,75: Inversion ofπ2p3/2andπ1f5/2Levels inCu75

We report the first confirmation of the predicted inversion between the pi2p3/2 and pi1f5/2 nuclear states in the nu(g)9/2 midshell. This was achieved at the ISOLDE facility, by using a combination of in-source laser spectroscopy and collinear laser spectroscopy on the ground states of 71,73,75Cu, which measured the nuclear spin and magnetic moments. The obtained values are mu(71Cu)=+2.2747(8)mu(N), mu(73Cu)=+1.7426(8)mu(N), and mu(75Cu)=+1.0062(13)mu(N) corresponding to spins I=3/2 for 71,73Cu and I=5/2 for 75Cu. The results are in fair agreement with large-scale shell-model calculations.

research product

Hyperfine structure and isotope shift of the neutron-rich barium isotopes139?146Ba and148Ba

The hyperfme structure and isotope shift in the 6s 2 S 1/2−6p 2P3/2 line of Ba II (455.4 nm) have been measured by collinear fast-beam laser spectroscopy for the neutron-rich isotopes139–146Ba and148Ba. Nuclear moments and mean square charge radii of these isotopes have been recalculated. The isotope shift of the isotope148Ba (T1/2=0.64 s) could be studied for the first time, yieldingδ〈r2〉138,148=1.245(3) fm2.

research product

Simple Nuclear Structure inCd111–129from Atomic Isomer Shifts

Isomer shifts have been determined in ^{111-129}Cd by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1/2^{+} and the 3/2^{+} ground states to the 11/2^{-} isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction wi…

research product

Isotope shift of182Hg and an update of nuclear moments and charge radii in the isotope range181Hg-206Hg

The technique of collinear fast-beam laser spectroscopy has been used to measure the isotope shifts of the even-even isotopes of Hg (Z=80) in the mass range 182≤A≤198 at the on-line mass separator ISOLDE at CERN. The atomic transition studied (6s 6p 3 P 2- 6s7s 3 S 1,λ=546.1 nm) starts from a metastable state, which is populated in a quasi resonant charge transfer process. The resulting changes in nuclear mean square charge radii show clearly that182Hg follows the trend of the heavier, even, weakly oblate isotopes. Correspondingly the huge odd-even shape staggering in the light Hg isotopes continues and the nuclear shape staggering and shape coexistence persists down to the last isotope inv…

research product

Billion-Fold Enhancement in Sensitivity of Nuclear Magnetic Resonance Spectroscopy for Magnesium Ions in Solution

Beta-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. Beta-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, beta-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg b-NMR spectra are measured for as few as 10^7 magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that beta-NMR is applicable for the…

research product

Laser spectroscopy investigation of the nuclear moments and radii of lutetium isotopes

Collinear laser spectroscopy experiments in the LuI transition $5d6s\!^{2} \; ^{2}\!D_{3/2} \rightarrow 5d6s6p \; ^{2}\!D_{3/2}$ were performed on all lutetium isotopes in the range of $^{161-179}$Lu. The nuclear spins, magnetic moments and quadrupole moments were determined from the hyperfine structures observed for 19 ground states and 11 isomers. Variations in the mean square charge radii as a function of neutron number were obtained from the isotope shifts. These data considerably extend the systematics of the properties of nuclei in the upper rare-earth region. A particular feature is the appearance of high-spin and low-spin ground states and isomeric states in the vicinity of the stab…

research product

Precision Measurement ofLi11Moments: Influence of Halo Neutrons on theLi9Core

The electric quadrupole moment and the magnetic moment of the 11Li halo nucleus have been measured with more than an order of magnitude higher precision than before, |Q| = 33.3(5) mb and mu = +3.6712(3)muN, revealing a 8.8(1.5)% increase of the quadrupole moment relative to that of 9Li. This result is compared to various models that aim at describing the halo properties. In the shell model an increased quadrupole moment points to a significant occupation of the 1d orbits, whereas in a simple halo picture this can be explained by relating the quadrupole moments of the proton distribution to the charge radii. Advanced models so far fail to reproduce simultaneously the trends observed in the r…

research product

Ground-state spins and moments of72,74,76,78Ga nuclei

Laser spectroscopy was performed on the ${}^{72,74,76,78}$Ga isotopes at On-Line Isotope Mass Separator (ISOLDE) facility, CERN. Ground-state nuclear spins and moments were extracted from the measured hyperfine spectra. The results are compared to shell-model calculations, which provide a detailed probe of the nuclear wave function. The spin is established from the shape of the hyperfine structure and the parity inferred from a comparison of shell-model calculations with the measured nuclear moments. The ground states of ${}^{76,78}$Ga are both assigned a spin and parity of ${I}^{\ensuremath{\pi}}={2}^{\ensuremath{-}}$, while ${}^{74}$Ga is tentatively assigned as ${I}^{\ensuremath{\pi}}={3…

research product

Spin and Magnetic Moment ofMg33: Evidence for a Negative-Parity Intruder Ground State

We report on the first determination of the nuclear ground-state spin of $^{33}\mathrm{Mg}$, $I=3/2$, and its magnetic moment, $\ensuremath{\mu}=\ensuremath{-}0.7456(5)\text{ }{\ensuremath{\mu}}_{N}$, by combining laser spectroscopy with nuclear magnetic resonance techniques. These values are inconsistent with an earlier suggested 1 particle-1 hole configuration and provide evidence for a 2 particle-2 hole intruder ground state with negative parity. The results are in agreement with an odd-neutron occupation of the $3/2\text{ }[321]$ Nilsson orbital at a large prolate deformation. The discussion emphasizes the need of further theoretical and experimental investigation of the island of inver…

research product

Total cross sections of reactions induced by neutron-rich light nuclei

Total nuclear reaction cross-sections are determined by means of a 4π-γ method. The results cover a wide span of targets for various stable beams. The validity of the method is shown in a combined systematics including also the results of transmission-type experiments. The data are very well described by the formula developed by Kox et al. The same method is applied to secondary fragment beams produced from a 44 MeV/u22Ne beam on a 332mg/cm2 181Ta target. Using the LISE spectrometer the fragments4, 6He,6–9, 11Li,7, 9–12, 14Be,10–15, 17B11–19C,13–19N,15–21O,18– 21F and20,21 Ne are analyzed and transported to interact with a 199.4 mg/cm2 Cu target surrounded by a 4π-γ counter. The measured to…

research product

Isotope shifts and nuclear-charge radii in singly ionizedCa40–48

The isotope shifts in the resonance lines 4${\mathit{s}}_{1/2}$\ensuremath{\rightarrow}4${\mathit{p}}_{1/2,3/2}$ in Ca ii have been measured for the isotopes $^{40\mathrm{\ensuremath{-}}48}\mathrm{Ca}$ by fast-ion-beam collinear laser spectroscopy. Atomic many-body perturbation theory was then used to calculate the electronic factor for the field shift, giving F=-285(3) MHz/${\mathrm{fm}}^{2}$. The estimate of the uncertainty in F is based on the agreement at the level of 1% for the 4s and 4p hyperfine structures obtained using the same wave functions which include core polarization and pair correlation to all orders. The theoretical value is in excellent agreement with the result F=-283(6)…

research product

Investigating the large deformation of the 5/2+ isomeric state in Zn73 : An indicator for triaxiality

research product

Evaluation of the magnetic moment ofRa213

The hyperfine field at the nucleus of singly ionized radium has been investigated using the relativistic linked-cluster many-body-perturbation-theory procedure, including the effects of distributed charge and magnetization over the nucleus. The total hyperfine field of 1239 T, when combined with the experimentally observed hyperfine constant for $^{213}\mathrm{Ra}^{+}$, yields a nuclear moment of 0.607(12)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$, in excellent agreement with the experimentally observed moment of 0.6133(18)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$ from Zeeman measurements. Our investigation leads to exchange core-polarization and correlation contributions of 14% and 13%, r…

research product

Isotope shift of40,42,44,48Ca in the 4s2S1/2→ 4p2P3/2transition

We report on improved isotope shift measurements of the isotopes 40,42,44,48Ca in the 4s2S1/2→4p2P3/2 transition using collinear laser spectroscopy. Accurately known isotope shifts in the 4s2S1/2→4p2P1/2 (D1) transition were used to calibrate the ion beam energy with an uncertainty of ΔU ≈ ± 0.25 V. The accuracy in the D2 transition was improved by a factor of 5–10. A King-plot analysis of the two transitions revealed that the field shift factor in the D2 line is about 1.8(13)% larger than in the D1 transition which is ascribed to relativistic contributions of the 4p1/2 wave function.

research product

Nuclear moments and charge radii of rare-earth isotopes studied by collinear fast-beam laser spectroscopy

The collinear fast-beam laser technique is being used to measure systematically hyperfine structures and isotope shifts of unstable nuclides in the rare-earth region. This brief report gives a general survey of the results obtained for the even-Z elements64Gd,66Dy,68Er and70Yb, with emphasis on the nuclear spins and moments. They allow a rather complete mapping of the single-particle structure and the development of nuclear deformation in the N > 82 region. The spins, magnetic moments and spectroscopic quadrupole moments of159–169Yb are presented in detail.

research product

Determination of nuclear spins of short-lived Rb and Cs isotopes by β radiation detected optical pumping

research product

Determination of nuclear spins and moments in a series of radium isotopes

Abstract The first investigation of hyperfine structure in radium isotopes has enabled the determination of nuclear spins, magnetic dipole and electric quadrupole moments of the isotopes with mass numbers A = 211, 213, 221, 223, 225, 227 and 229. Isotope shifts in the mass range A = 208−232 have also been measured. These studies were carried out using the technique of on-line collinear fast beam laser spectroscopy.

research product

Spins and magnetic moments ofMn58,60,62,64ground states and isomers

The odd-odd $^{54,56,58,60,62,64}\mathrm{Mn}$ isotopes ($Z=25$) were studied using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. From the measured hyperfine spectra the spins and magnetic moments of Mn isotopes up to $N=39$ were extracted. The previous tentative ground state spin assignments of $^{58,60,62,64}\mathrm{Mn}$ are now firmly determined to be $I=1$ along with an $I=4$ assignment for the isomeric states in $^{58,60,62}\mathrm{Mn}$. The $I=1$ magnetic moments show a decreasing trend with increasing neutron number while the $I=4$ moments remain quite constant between $N=33$ and $N=37$. The results are compared to large-scale shell-model calculations using the GXPF1A and…

research product

Systematics of nuclear ground state properties inSr78–100by laser spectroscopy

Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=98 and A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii are compared with predictions of the droplet model and of Hartree-Fock-plus-BCS calculations. For the isotopes in the transitional regions below and above the N=50 shell closure, the inclusion of quadrupole zero point motion in the Droplet model describes part of the observed shell effect. An additional chan…

research product

Emission of neutrons and the neutron halo of $^{11}$Li

The matter distribution of the neutron drip-line nuclei has been a subject of intense interest since pioneering radioactive-beam experiments at Berkeley1). Unusually large interaction cross-sections measured at relativistic energies for 11Li,14Be and 17B nuclei were translated into effective matter radii. It was found that these were significantly larger than for other p-shell nuclei. In particular, the root-mean-square (rms) mass radius of 11Li was found to be 3.2fm, which was considerably larger than the 2.4fm radius of 9Li. At the same time, no signatures for significant deformation of 11Li were found in measurements of electric quadrupole moment by means of laser spectroscopy2).

research product

Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure

Physical review letters 122(19), 192502 (2019). doi:10.1103/PhysRevLett.122.192502

research product

TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235-U or 252-Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on…

research product

Laser applications in nuclear physics

research product

The electronic field shift factor of the 4s2S1/2?4p2PJ transitions in CaII

The isotope shifts (IS) of the resonance lines 4s2S1/2−4p2PJin CaII (seven isotopes) have been measured by fast ion beam collinear laser spectroscopy (FIBCLS) with non-optical detection of the resonant laser-ion interaction. The electronic field shift factorF was derived from the experimental IS via a King plot procedure using the mean square nuclear charge radii from muon spectroscopy andelectron scattering. TheJ-independent resultF=−283(6) Mhz/fm2 was obtained. TheF-value resulting from extensive many body perturbation theory (MBPT) calculations, recently performed by Martensson-Pendrill et al., is in excellent agreement with the experimental value, confirming the reliability of the MBPT …

research product

Two-neutron removal reactions for very neutron-rich nuclei

Abstract The two-neutron removal reactions of beams of 11 Li, 14 Be and 8 He upon Be, Ni and Au targets were studied at 30 MeV/u. The cross sections and the neutron forward angular distributions were measured; they correlate strongly with the two-neutron separation energy of the projectile. Even though the coverage of the neutron detectors was limited, a rough neutron-neutron distribution could be extracted. A simplified interpretation of the data is presented.

research product

Nuclear ground-state spins and magnetic moments ofMg27,Mg29, andMg31

The ground-state spins and magnetic moments of neutron-rich {sup 27}Mg, {sup 29}Mg, and {sup 31}Mg were measured for the first time with laser and {beta}-NMR spectroscopy at ISOLDE/CERN. The hyperfine structure of {sup 27}Mg--observed in fluorescence--confirms previous assignments of the spin I=1/2 and reveals the magnetic moment {mu}{sub I}({sup 27}Mg)=-0.4107(15){mu}{sub N}. The hyperfine structure and nuclear magnetic resonance of optically polarized {sup 29}Mg--observed in the asymmetry of its {beta} decay after implantation in a cubic crystal--give I=3/2 and {mu}{sub I}({sup 29}Mg)=+0.9780(6){mu}{sub N}. For {sup 31}Mg they yield together I=1/2 and {mu}{sub I}({sup 31}Mg)=-0.88355(15){…

research product

Isotope shift measurements in the 2s1/2→ 2p3/2transition of Be+and extraction of the nuclear charge radii for7, 10, 11Be

International audience; shift measurements in the 2s 1/2 → 2p 3/2 transition of Be + and extraction of the nuclear charge radii for 7, 10, 11 Be Abstract. We have performed isotope shift measurements in the 2s 1/2 → 2p 3/2 transition of Be + ions using advanced collinear laser spectroscopy with two counterpropagating laser beams. Measurements involving a frequency comb for laser stabilization and absolute frequency determination allowed us to determine the isotope shifts with an accuracy of 2 MHz. From the isotope shifts between 9 Be and 7, 10, 11 Be, high-accuracy mass shift calculations and the charge radius of the reference isotope 9 Be we determined nuclear charge radii for the isotopes…

research product

Ground-state electromagnetic moments of calcium isotopes

Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM

research product

From Calcium to Cadmium: Testing the Pairing Functional through Charge Radii Measurements of Cd100−130

Differences in mean-square nuclear charge radii of $^{100--130}\mathrm{Cd}$ are extracted from high-resolution collinear laser spectroscopy of the $5s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}5p\text{ }{^{2}P}_{3/2}$ transition of the ion and from the $5s5p\text{ }{^{3}P}_{2}\ensuremath{\rightarrow}5s6s\text{ }{^{3}S}_{1}$ transition in atomic Cd. The radii show a smooth parabolic behavior on top of a linear trend and a regular odd-even staggering across the almost complete $sdgh$ shell. They serve as a first test for a recently established new Fayans functional and show a remarkably good agreement in the trend as well as in the total nuclear charge radius.

research product

Nuclear moments and laser spectroscopy

Laser spectroscopy measurements have yielded a wealth of new information about the moments and charge radii of unstable isotopes. The procedures of evaluating these moments from the magnetic dipole and electric quadrupole terms of the hyperfine structure arew discussed. Examples are presented, with emphasis on the isotopic chains of odd-proton nuclei, and their essential features are put into the context of current theoretical model descriptions for spherical and deformed nuclei. Finally, new developments of extremely sensitive experimental techniques are discussed with regard to an application to nuclei very far from stability.

research product

Nuclear spins, moments, and changes of the mean square charge radii of sup.(140-153)Eu

The hyperfine structures and isotope shifts of 14 isotopes of Eu (Z=63) in the mass range 140≦A≦153, partly with isomeric states, have been measured in the atomic transitions at 4,594 A and 4,627 A, using the technique of collinear fast-beam laser spectroscopy at the ISOLDE facility at CERN. The nuclear spins, the magnetic dipole and electric quadrupole moments, and the changes in the mean square charge radii have been evaluated. These nuclear parameters clearly reflect the effects of theN=82 neutron-shell closure in the single-proton hole states with respect to the semi-magic gadolinium (Z=64), and theN=88−90 shape transition.

research product

Nuclear Magnetic Moment ofTl207

The magnetic moment 1.876(5)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$ of 4.77-min $^{207}\mathrm{Tl}$, the only heavy nucleus with a doubly magic core plus a single ${s}_{\frac{1}{2}}$ particle or hole, was measured from the hfs by collinear fast-beam laser spectroscopy at ISOLDE (isotope separator at the CERN synchrotron). The result is of theoretical importance as a test case for core polarization since the nuclear structure is relatively simple and the orbital part of the magnetic moment, including strong pion-exchange contribution, is expected to be zero.

research product

Hyperfine structure and isotope shifts of neutron-rich138?146Cs

The 6s2S1/2-7p 2P3/2 transition in138–142Cs (λ=455.5 nm) has been investigated by high-resolution collinear laser spectroscopy in a fast atomic beam. The isotopes are obtained by on-line mass separation of fission products. Nuclear moments and changes of mean-square charge radii are derived from hyperfine structure and isotope shift.

research product

The mean square nuclear charge radius of

We report on a collinear laser spectroscopy measurement of the nuclear charge radius of (I = 3/2), yielding . Within the experimental accuracy, the N = 20 neutron shell closure has no influence on the charge radii of the calcium isotopes.

research product

Nuclear ground state spins of short-lived strontium isotopes

Nuclear ground state spins of the odd-mass strontium isotopes between A=79 and 97 were determined by measurements of the hyperfine structure in the ionic transition 5s2S1/2−5p2P3/2. The spins of93Sr and97Sr are revised to I=5/2 and I=1/2, respectively, while assignments for the remaining isotopes are confirmed.

research product

High-resolution laser spectroscopy of Al27-32

Hyperfine spectra of Al27-32 (Z=13) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the 3s23p2P3/2o→3s24s2S1/2 atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of Al29 and electric quadrupole moments of Al29,30. A potentially reduced charge radius at N=19 may suggest an effect of the N=20 shell closure, which is visible in the Al chain, contrary to other isotopic chains in the sd shell. The experimental results are compared with theoretical calculations in the framework of the valence-space in-medium similarity renormalization gro…

research product

Laser-spectroscopy measurements of 72–96Kr spins, moments and charge radii

Abstract The spins, moments and radii of krypton isotopes have been investigated by collinear fast-beam laser spectroscopy in combination with ultra-sensitive collisional ionization detection. The sequence of isotopes under study ranges from the neutron-deficient N = Z = 36 isotope 72 Kr to the neutron-rich 96 Kr ( N = 60). The mean-square charge radii in the neighbourhood of the N = 50 neutron-shell closure exhibit a pronounced shell effect which has recently been explained in the framework of relativistic mean-field theory. The results for the neutron-deficient nuclei are related to the shape coexistence of strongly prolate and near-spherical states which is known from nuclear spectroscop…

research product

Defect reactions of implanted Li in ZnSe observed by β-NMR

Abstract Using β-radiation detected nuclear magnetic resonance (β-NMR), we investigated the microscopic behavior of implanted 8 Li in nominally undoped ZnSe crystals. From the temperature-dependent amplitudes of high-resolution NMR spectra we conclude a gradual interstitial-to-substitutional site change between 200 and 350 K . This is in accordance with earlier emission channeling results. We argue that this conversion proceeds via Lii++VZn2−→LiZn− and involves implantation related Zn vacancies.

research product

Collisional ionization as a sensitive detection scheme in collinear laser-fast-beam spectroscopy

Abstract State-selective collisional ionization of fast atomic beams is used to detect optical pumping. Counting of these ions is superior in sensitivity by several orders of magnitude to the conventional fluorescence detection, provided that the energy levels involved in the optical pumping process are sufficiently well separated. A straightforward application is envisaged in the collinear laser-fast-beam spectroscopy of rare-gas isotopes far from stability of which only very weak beams are available from on-line isotope separators.

research product

Quadrupole moments of odd-A 53−63Mn: Onset of collectivity towards N=40

Physics letters / B 760, 387 - 392 (2016). doi:10.1016/j.physletb.2016.07.016

research product

Laser spectroscopy — Recent results and prospects for lighter nuclei

Atomic physics methods have provided important information about the electromagnetic properties of the nuclear ground states. In recent years the experimental effort has been directed towards optical high resolution spectroscopy of very high sensitivity, giving access to short-lived nuclides very far from stability. A few of these new techniques based on collinear laser spectroscopy are presented with their latest results. They are suitable for an extension of the experiments to the region of lighter nuclei.

research product

Neutron momentum distributions from "core break-up" reactions of halo nuclei

Neutron angular distributions from violent break-up reactions of Li-11 and Be-11 have been measured at 28 MeV/u and 280 MeV/u and at 41 MeV/u and 460 MeV/u, respectively. The derived neutron momentum distributions show a narrow component in transverse momentum that is within uncertainties independent of beam energy and target charge. This component is suggested to be simply related to the momentum distribution of the loosely bound halo neutron(s) in the projectiles.

research product

Magnetic and quadrupole moments of neutron deficient 58-62Cu isotopes

Abstract This paper reports on the ground state nuclear moments measured in 58–62Cu using collinear laser spectroscopy at the ISOLDE facility. The quadrupole moments for 58–60Cu have been measured for the first time as Q ( Cu 58 ) = − 15 ( 3 ) efm 2 , Q ( Cu 59 ) = − 19.3 ( 19 ) efm 2 , Q ( Cu 60 ) = + 11.6 ( 12 ) efm 2 and with higher precision for 61,62Cu as Q ( Cu 61 ) = − 21.1 ( 10 ) efm 2 , Q ( Cu 62 ) = − 2.2 ( 4 ) efm 2 . The magnetic moments of 58,59Cu are measured with a higher precision as μ ( Cu 58 ) = + 0.570 ( 2 ) μ N and μ ( Cu 59 ) = + 1.8910 ( 9 ) μ N . The experimental nuclear moments are compared to large-scale shell-model calculations with the GXPF1 and GXPF1A effective i…

research product

First observation of the blue optical lines of francium

We report here the first wave-length measurements in the second resonance doublet of francium, D1'(7s2S1/2-8p2P 1/2) and D2'(7s2S1/2-8p2P 3/2), carried out by collinear fast-beam laser spectroscopy. The transition wave numbers are D1' = 23112.9603(50) cm-1 and D2' = 23658.3058(40) cm-1, corresponding to a 8p fine-structure splitting of δW8p = 545.3454(70) cm-1. In addition the hyperfine structure in both lines and the isotope shift in the D2' line for the isotopes 212,213,220,221Fr have been measured. The results are discussed with special emphasis on the analysis of the atomic structure in the heaviest alkali element and compared with theoretical predictions, as well as the only earlier sp…

research product

Nuclear charge radii of potassium isotopes beyond N=28

We report on the measurement of optical isotope shifts for 38, 39, 42, 44, 46–51 K relative to 47 K from which changes in the nuclear mean square charge radii across the N = 28 shell closure are deduced. The investigation was carried out by bunched-beam collinear laser spectroscopy at the CERN-ISOLDE radioactive ion-beam facility. Mean square charge radii are now known from 37K to 51K, covering all ν f7/2-shell as well as all νp3/2-shell nuclei. These measurements, in conjunction with those of Ca, Cr, Mn and Fe, provide a first insight into the Z dependence of the evolution of nuclear size above the shell closure at N = 28

research product

Changes in nuclear structure along the Mn isotopic chain studied via charge radii

The hyperfine spectra of $^{51,53-64}$Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic $3d^5\ 4s^2\ ^{6}\text{S}_{5/2}\rightarrow 3d^5\ 4s4p\ ^{6}\text{P}_{3/2}$ and ionic $3d^5\ 4s\ ^{5}\text{S}_2 \rightarrow 3d^5\ 4p\ ^{5}\text{P}_3$ transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear struc…

research product

Probing the single-particle behavior above Sn132 via electromagnetic moments of Sb133,134 and N=82 isotones

Magnetic and quadrupole moments of the $7/{2}^{+}$ ground state in $^{133}\mathrm{Sb}$ and the $({7}^{\ensuremath{-}})$ isomer in $^{134}\mathrm{Sb}$ have been measured by collinear laser spectroscopy to investigate the single-particle behavior above the doubly magic nucleus $^{132}\mathrm{Sn}$. The comparison of experimental data of the $7/{2}^{+}$ states in $^{133}\mathrm{Sb}$ and neighboring $N=82$ isotones to shell-model calculations reveals the sensitivity of magnetic moments to the splitting of the spin-orbit partners $\ensuremath{\pi}0{g}_{9/2}$ and $\ensuremath{\pi}0{g}_{7/2}$ across the proton shell closure at $Z=50$. In contrast, quadrupole moments of the $N=82$ isotones are insen…

research product

Nuclear moments and charge radii of argon isotopes between the neutron-shell closures and

We report the measurement of optical isotope shifts for 40−44 Ar relative to 38 Ar from which changes in the mean square nuclear charge radii across the 1f7/2 neutron shell are deduced. In addition, the hyperfine structure of 41 Ar and 43 Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin I = 5/2 for 43 Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from 32 Ar to 46 Ar, covering sd-shell as well as f7/2-shell nuclei. They are discussed in the framework of spherical SGII Skyrme…

research product

Nuclear charge radii of 62−80Zn and their dependence on cross-shell proton excitations

Nuclear charge radii of 62−80Zn have been determined using collinear laser spectroscopy of bunched ion beams at CERN-ISOLDE. The subtle variations of observed charge radii, both within one isotope and along the full range of neutron numbers, are found to be well described in terms of the proton excitations across the Z=28 shell gap, as predicted by large-scale shell model calculations. It comprehensively explains the changes in isomer-to-ground state mean square charge radii of 69−79Zn, the inversion of the odd-even staggering around N=40 and the odd-even staggering systematics of the Zn charge radii. With two protons above Z=28, the observed charge radii of the Zn isotopic chain show a cum…

research product

The quadrupole moment of the neutron-halo nucleus 11Li

The quadrupole moment ratio of 9Li and 11Li was measured by a combination of in-beam laser induced nuclear polarization and β-NMR in LiNbO3. The result |Q(11Li)/Q(9Li)| = 1.14(16) is consistent with cluster models describing 11Li as composed of a 9Li core and a far extended halo of two loosely bound neutrons.

research product

Experimental determination of anIπ=2−ground state inCu72,74

This article reports on the ground-state spin and moments measured in $^{72,74}\mathrm{Cu}$ using collinear laser spectroscopy at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. From the measured hyperfine coefficients, the nuclear observables $\ensuremath{\mu}$(${}^{72}\mathrm{Cu})=\ensuremath{-}1.3472(10){\ensuremath{\mu}}_{N}$, $\ensuremath{\mu}({}^{74}\mathrm{Cu})=\ensuremath{-}1.068(3){\ensuremath{\mu}}_{N}$, $Q({}^{72}\mathrm{Cu})=+8(2) {\mathrm{efm}}^{2}$, $Q({}^{74}\mathrm{Cu})=+26(3) {\mathrm{efm}}^{2}$, $I({}^{72}\mathrm{Cu})=2$, and $I({}^{74}\mathrm{Cu})=2$ have been determined. Through a comparison of the measured magnetic moments with different models, the negative …

research product

Proton-Neutron Pairing Correlations in the Self-Conjugate NucleusK38Probed via a Direct Measurement of the Isomer Shift

A marked difference in the nuclear charge radius was observed between the ${I}^{\ensuremath{\pi}}={3}^{+}$ ground state and the ${I}^{\ensuremath{\pi}}={0}^{+}$ isomer of $^{38}\mathrm{K}$ and is qualitatively explained using an intuitive picture of proton-neutron pairing. In a high-precision measurement of the isomer shift using bunched-beam collinear laser spectroscopy at CERN-ISOLDE, a change in the mean-square charge radius of $⟨{r}_{\mathrm{c}}^{2}⟩{(}^{38}{\mathrm{K}}^{m})\ensuremath{-}⟨{r}_{\mathrm{c}}^{2}⟩{(}^{38}{\mathrm{K}}^{g})=0.100(6)\text{ }\text{ }{\mathrm{fm}}^{2}$ was obtained. This is an order of magnitude more accurate than the result of a previous indirect measurement fr…

research product

A New Sensitive Technique for Laser Spectroscopic Studies of Radioactive Rare-Gas Isotopes

The concept of laser ionization has been widely used in spectroscopy studies and for the detection of minute samples of atoms. Being based on ion counting, it avoids the sensitivity problems of conventional fluorescence spectroscopy, which are due to low detection efficiency and large background from scattered laser light. We report the first application of an alternative ionization scheme which we have developed for collinear laser spectroscopy on fast atomic beams /1/. Here the increase in sensitivity has considerably enlarged the range of isotopes very far from stability, for which nuclear moments and radii can be investigated in hyperfine structure and isotope shift measurements.

research product

Collinear laser spectroscopy on unstable isotopes—A tool of nuclear physics

Atomic hyperfine structures and isotope shifts yield basic information about nuclear ground-state spins, moments and mean square charge radii. Recently, the collinear-beam laser experiments at ISOLDE have considerably enlarged the range of elements for which these studies can be extended into regions far from β-stability. The essential features of these experiments are outlined, and examples of the results on the rare-earth and radium isotopic chains are given. Finally, further improvements in sensitivity using non-optical detection are discussed.

research product

Discovery of a long-lived low-lying isomeric state in Ga-80

Collinear laser spectroscopy was performed on the $^{80}\mathrm{Ga}$ isotope at ISOLDE, CERN. A low-lying isomeric state with a half-life much greater than $200$ ms was discovered. The nuclear spins and moments of the ground and isomeric states and the isomer shift are discussed. Probable spins and parities are assigned to both long-lived states (${3}^{\ensuremath{-}}$ and ${6}^{\ensuremath{-}}$) deduced from a comparison of the measured moments to shell-model calculations.

research product

Precision Test of Many-Body QED in theBe+2pFine Structure Doublet Using Short-Lived Isotopes

Absolute transition frequencies of the $2s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}2p\text{ }{^{2}P}_{1/2,3/2}$ transitions in ${\mathrm{Be}}^{+}$ were measured for the isotopes $^{7,9--12}\mathrm{Be}$. The fine structure splitting of the $2p$ state and its isotope dependence are extracted and compared to results of ab initio calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of $m{\ensuremath{\alpha}}^{6}$ and $m{\ensuremath{\alpha}}^{7} \mathrm{ln} \ensuremath{\alpha}$. Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents on…

research product

Projectile coulomb excitation with fast radioactive beams

We report a search for gamma rays emanating from Coulomb excitation of fast (30-46 MeV/u) radioactive projectiles He-8, Be-11,Be-12,Be-14 interacting with a lead target. These are clearly identified by their Doppler shift. The 320 keV 1/2(-) --> 1/2(+)gamma transition from Be-11 was observed with a cross-section of 191 +/- 26 mb which is noticeably less than expected from the known lifetime and in the perturbation limit of pure Coulomb excitation. In the other nuclei rather stringent upper limits of 0.01 to 0.2 Weisskopf units, are placed on the hypothetical transition to 1(-) states.

research product

COLLINEAR LASER SPECTROSCOPY ON NEUTRON-RICH Mn ISOTOPES APPROACHING N = 40

We have studied 51,53−64Mn (Z=25) via bunched-beam collinear laser spectroscopy at ISOLDE, CERN. Model-independent information on the ground- and isomeric state spins, as well as their g-factors is obtained from the measured hyperfine spectra. The spins are essential for further establishing the level schemes in the mass region, while the g-factors reveal the changing ground state wave functions in the Mn chain approaching N=40. ispartof: pages:699-702 ispartof: Acta Physica Polonica B vol:46 issue:3 pages:699-702 ispartof: location:Zakopane, Poland status: published

research product

Moments and Radii of 78–100Sr

The chain of Sr isotopes ranges from the neutron-shell closure at N = 50 into both the N = 38 and N = 60 deformation regions which represent the main topic of this workshop. For a detailed understanding of the nature of these nuclei, laser spectroscopy can provide the ground state spins and moments, as well as the the changes in the mean square charge radii as a function of the neutron number N. Recent experiments at Karlsruhe [1] and at Daresbury [2] essentially cover the neutron-deficient and stable Sr isotopes between N = 40 and N = 50. In order to complement these results, and to extend the measurements into the region of neutron-rich isotopes, we have performed an experiment at the ISO…

research product

Very high sensitivity in collinear laser spectroscopy: resonance detection by particle counting techniques

Abstract Fast-beam collinear laser spectroscopy with resonance detection by counting of fluorescence photons provides a versatile tool for precise determinations of nuclear ground-state properties. The intrinsic high sensitivity of this method can be further increased by almost three orders of magnitude if measuring schemes based on ion or atom counting are introduced. The optical pumping from one atomic state to another at an appreciably different excitation energy is detected via state-selective collisional charge exchange processes and charge-state separated atom or ion counting. Applications of these techniques on alkaline earth, noble gas, mercury and thallium beams is examined.

research product

Cu charge radii reveal a weak sub-shell effect at N=40

Collinear laser spectroscopy on Cu58-75 isotopes was performed at the CERN-ISOLDE radioactive ion beam facility. In this paper we report on the isotope shifts obtained from these measurements. State-of-the-art atomic physics calculations have been undertaken in order to determine the changes in mean-square charge radii δ(r2)A,A′ from the observed isotope shifts. A local minimum is observed in these radii differences at N=40, providing evidence for a weak N=40 sub-shell effect. However, comparison of δ(r2)A,A′ with a droplet model prediction including static deformation deduced from the spectroscopic quadrupole moments, points to the persistence of correlations at N=40.

research product

Charge radii of neon isotopes across the sd neutron shell

We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable Ne-20, based on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical detection based on optical pumping and state-selective collisional ionization, which was complemented by an accurate determination of the beam kinetic energy. The new results provide information on the structural changes in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and halo candidate Ne-17 up to the…

research product

Nuclear spin and magnetic moment of 11Li

Abstract Nuclear spin and magnetic moment of 11Li have been measured by optical pumping of a fast atomic beam. The angular asymmetry of the β-radiation from the polarized nuclei was used to detect the hfs of the 2s 2 S 1 2 −2 p 2 P 1 2 resonance line and the NMR signal cubic LiF crystal lattice. The results I= 3 2 and μI=3.6673(25) n.m. indicate a pure 1p 3 2 state of the valence proton.

research product

Nuclear Charge Radii ofMg21−32

Charge radii of all magnesium isotopes in the sd shell have been measured, revealing evolution of the nuclear shape throughout two prominent regions of assumed deformation centered on (24)Mg and (32)Mg. A striking correspondence is found between the nuclear charge radius and the neutron shell structure. The importance of cluster configurations towards N=8 and collectivity near N=20 is discussed in the framework of the fermionic molecular dynamics model. These essential results have been made possible by the first application of laser-induced nuclear orientation for isotope shift measurements.

research product

Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes fromN=28toN=46: Probes for core polarization effects

Measurements of the ground-state nuclear spins and magnetic and quadrupole moments of the copper isotopes from $^{61}\mathrm{Cu}$ up to $^{75}\mathrm{Cu}$ are reported. The experiments were performed at the CERN online isotope mass separator (ISOLDE) facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the $N=28$ and $N=50$ shell closures is reasonably reproduced by large-scale shell-model calculations starting from a $^{56}\mathrm{Ni}$ core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is, however, strongly reduced at $N=40$ due to the parity change between the $\mat…

research product

Nuclear ground state properties of 99Sr by collinear laser spectroscopy with non-optical detection

Abstract Collinear fast-beam laser spectroscopy, with improved sensitivity for ions with hyperfine split transitions, is performed to measure the hyperfine structure and the isotope shift of the well deformed short-lived 99Sr. The new method consists in ground state depopulation by a two-step optical pumping sequence prior to state selective neutralization and fast-atom counting. A definitive nuclear spin value I = 3 2 , the change in mean square charge radius δ〈r2〉98,99 and the nuclear moments are derived. These results are compared to nuclear spectroscopy information and are interpreted in the frame of the particle plus deformed core model.

research product

High-Resolution Spectroscopy in Fast Atomic Beams

Narrow optical resonances have been observed in fast beams of Na and Cs atoms, obtained from ion beams by charge-transfer collisions with Na, K, or Cs. Corresponding to the narrowing of the velocity distribution, occurring by acceleration, the Doppler width along the beam direction is considerably reduced [1, 2].

research product

Laser spectroscopy and the properties of light nuclei near the neutron drip line

The interesting nuclear structure phenomena observed in some light nuclei at the neutron drip line suggest the measurement of basic ground state properties such as spins, magnetic moments and electric quadrupole moments. Here it will be discussed what experiments are presently feasable using laser spectroscopy. For the outstanding example of a “halo” nucleus,11Li, the development of a technique combining β-asymmetry detected optical pumping in a fast beam with NMR spectroscopy has yielded pertinent results, the most recent of which is an experimental value of the nuclear quadrupole moment.

research product

Unexpectedly large charge radii of neutron-rich calcium isotopes

Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain "magic" numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly-magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known Ca isotopes have been successfully described by nuclear theory, it is still a challenge to predict their charge radii evolution. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theo…

research product

Charge radius change in the heavy tin isotopes until A = 132 from laser spectroscopy

Laser spectroscopy measurements have been carried out on the very neutron-rich tin isotopes with the COMPLIS experimental setup. Using the 5s 25p 23P 0 → 5s 25p6s 3P 1 optical transition, hyperfine spectra of 126-132Sn and 125m, 127m, 129m-131mSn where recorded for the first time. The variation of the mean-square charge radius ( δ〈r 2〉) between these nuclei and nuclear moments of the isomers and the odd isotopes were thus measured. An odd-even staggering which inverts at A = 130 is clearly observed. This indicates a small appearance of a plateau on the δ〈r 2〉 which has to be confirmed by measuring the isotope shift beyond A = 132.

research product

Laser Spectroscopy of Short-Lived Isotopes in Fast Atomic Beams and Resonance Cells

The introduction of laser techniques to optical spectroscopy of hyperfine structure (HFS) and isotope shift (IS) has put new life into this field at the intersection between atomic and nuclear physics which is now about fifty years old. Two severe limitations of classical spectroscopy could be reduced drastically, i.e., (i) the amount of atoms needed for optical spectroscopy and (ii) the Doppler width of optical lines. The increase in sensitivity went together with the development of powerful accelerators or reactors so that exotic nuclei with half lives down to 10 msec can now be produced and optically analysed. The increase in resolution allows the determination of nuclear spins, nuclear …

research product

Nuclear spins of76Rb and119Cs by? radiation detected optical pumping

An optical pumping apparatus has been attached to the reconstructed ISOLDE on-line mass separator at CERN in order to obtain nuclear data of isotopes far fromβ stability. As first results the spins of76Rb (T 1/2=36.8 s) and119Cs (T 1/2=37.7 s) have been determined byβ radiation detected optical pumping (β-RADOP) to beI=1 andI=9/2 respectively.

research product

Spin and magnetic moment of23Mg

A negative magnetic moment of 23Mg has been determined by collinear laser spectroscopy at CERN-ISOLDE. The absolute value is in agreement with previous measurements by nuclear magnetic resonance while the sign points at high-seniority configurations. The result is consistent with shell-model predictions for nuclei with valence nucleons in the sd shell. ispartof: Journal of Physics G, Nuclear and Particle Physics vol:44 issue:7 status: published

research product

Shell structure of potassium isotopes deduced from their magnetic moments

\item[Background] Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \item[Purpose] Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \item[Method] High-resolution collinear laser spectroscopy on bunched atomic beams. \item[Results] From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the …

research product

Laser spectroscopy of gallium isotopes beyond N = 50

The installation of an ion-beam cooler-buncher at the ISOLDE, CERN facility has provided increased sensitivity for collinear laser spectroscopy experiments. A migration of single-particle states in gallium and in copper isotopes has been investigated through extensive measurements of ground state and isomeric state hyperfine structures. Lying beyond the N = 50 shell closure, 82Ga is the most exotic nucleus in the region to have been studied by optical methods, and is reported here for the first time. ispartof: pages:012071-6 ispartof: Journal of Physics: Conference Series vol:381 issue:1 pages:012071-6 ispartof: Rutherford Centennial Conference on Nuclear Physics location:Manchester, UK dat…

research product

Hyperfine structure and isotope shift investigations in $^{202-222}$Rn for the study of nuclear structure beyond Z = 82

The hyperfine structure (hfs) and isotope shift (IS) in the isotopic chain of the radioactive element radon have been studied for the first time. The measurements were carried out by collinear fast-beam laser spectroscopy at the mass separator facility ISOLDE at CERN. The IS between 16 isotopes in the mass range 202≦A≦222 and the hfs of 7 odd-A isotopes were determined in the transitions 7s [3/2]2-7p [5/2]3 (745 nm) of Rn I. The nuclear spins and moments, as well as the observed inversion of the odd-even staggering for218–222Rn, can be associated with the effects of octupole instability around N=134.

research product

Quadrupole moments and mean-square charge radii in the bismuth isotope chain

Abstract Isotope shifts and hyperfine structures of the 205,206,208,210,210m,212,213 Bi isotopes have been studied on the 306.7 nm line using gas cell laser spectroscopy. The neutron-rich isotopes are the first isotones of Pb to be measured immediately above the N = 126 shell closure. The ground state quadrupole moments of the even- N isotopes increase as neutrons are added or removed from the N = 126 shell, but no corresponding increase is observed in the charge radii.

research product

Nuclear moments and charge radii of bismuth isotopes

Isotope shifts and hyperfine structures have been measured on the 306.7 nm line in bismuth isotopes with A = 205-210, 210m, 212 and 213 by gas cell laser spectroscopy. More precise measurements were made for the A = 207-209 isotopes in atomic beam measurements. Nuclear magnetic and quadrupole moments were deduced. A detailed comparison of the nuclear charge radii systematics has been made in the region using a King plot technique.

research product

Charge Radius of the Short-Lived Ni68 and Correlation with the Dipole Polarizability

We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the descrip…

research product

Spins and electromagnetic moments of Cd101–109

The neutron-deficient cadmium isotopes have been measured by high-resolution laser spectroscopy at CERN-ISOLDE. The electromagnetic moments of $^{101}\mathrm{Cd}$ have been determined for the first time and the quadrupole-moment precision of $^{103}\mathrm{Cd}$ has been vastly improved. The results on the sequence of $5/{2}^{+}$ ground states in $^{101--109}\mathrm{Cd}$ are tentatively discussed in the context of simple structure in complex nuclei as similarities are found with the $11/{2}^{\ensuremath{-}}$ states in the neutron-rich cases. Comparison with shell-model calculations reveals a prominent role of the two holes in the $Z=50$ core.

research product

Nuclear moments from laser spectroscopy

The systematic laser spectroscopy measurements of nuclear spins, moments and charge radii from hyperfine structures and isotope shifts are reviewed from a methodical point of view. Examples are given for the typical experimental approaches and their results. Laser spectroscopy methods of direct nuclear g-factor measurement have interesting features in common with the low-temperature nuclear orientation technique. These are described in some detail and discussed in their particular physics context.

research product

Hyperfine structure constants of the CaII states 4s 2 S 1/2 and 4p 2 P 1/2, 3/2 and the nuclear quadrupole moment of43Ca

The hyperfine structure splittings of the 4s 2 S 1/2 → 4p 2 P 1/2, 3/2 transitions in43CaII have been measured by fast ion beam collinear laser spectroscopy. The resonant laser interaction was observed using non-optical detection based on optical ground state depopulation pumping, state selective neutralization and charge state separated particle counting. The extracted magnetic dipole hyperfine structure constants for43CaA(2 S 1/2)=−805(2) MHz,A(2 P 1/2)=−145.5(1.0) MHz andA(2 P 3/2)=−31.9(0.2) MHz are in excellent agreement with relativistic many body perturbation theory predictions available for this alkali-like ion. The combined results are used to evaluate the semi-empirical analysis m…

research product

Collinear laser spectroscopy at ISOLDE: new methods and highlights

Over three and a half decades of collinear laser spectroscopy and the COLLAPS setup have played a major role in the ISOLDE physics programme. Based on a general experimental principle and diverse approaches towards higher sensitivity, it has provided unique access to basic nuclear properties such as spins, magnetic moments and electric quadrupole moments as well as isotopic variations of nuclear mean square charge radii. While previous methods of outstanding sensitivity were restricted to selected chemical elements with special atomic properties or nuclear decay modes, recent developments have yielded a breakthrough in sensitivity for nuclides in wide mass ranges. These developments include…

research product