0000000000189691

AUTHOR

H. J. Kluge

Mass Measurement on the rp-Process Waiting Point 72Kr

The mass of one of the three major waiting points in the astrophysical rp process $^{72}$Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of $\deltam/m = 1.2\times 10–7 (\deltam$ = 8 keV). $^{73,74}$Kr, also needed for astrophysical calculations, were measured with more than 1 order of magnitude improved accuracy. We use the ISOLTRAP masses of $^{72–74}$Kr to reanalyze the role of $^{72}$Kr (T$_{1/2}$ = 17.2 s) in the rp process during x-ray bursts and conclude that $^{72}$Kr is a strong waiting point delaying the burst duration with at least 80\% of its $\beta$-decay half-life.

research product

Quadrupole moments of radium isotopes from the 7p 2 P 3/2 hyperfine structure in Ra II

The hyperfine structure and isotope shift of221–226Ra and212,214Ra have been measured in the ionic (Ra II) transition 7s 2 S 1/2–7p 2 P 3/2 (λ=381.4 nm). The method of on-line collinear fast-beam laser spectroscopy has been applied using frequency-doubling of cw dye laser radiation in an external ring cavity. The magnetic hyperfine fields are compared with semi-empirical and ab initio calculations. The analysis of the quadrupole splitting by the same method yields the following, improved values of spectroscopic quadrupole moments:Q s (221Ra)=1.978(7)b,Q s (223Ra)=1.254(3)b and the reanalyzed valuesQ s (209Ra)=0.40(2)b,Q s (211Ra)=0.48(2)b,Q s (227Ra)=1.58(3)b,Q s (229Ra)=3.09(4)b with an ad…

research product

Isotope shift of182Hg and an update of nuclear moments and charge radii in the isotope range181Hg-206Hg

The technique of collinear fast-beam laser spectroscopy has been used to measure the isotope shifts of the even-even isotopes of Hg (Z=80) in the mass range 182≤A≤198 at the on-line mass separator ISOLDE at CERN. The atomic transition studied (6s 6p 3 P 2- 6s7s 3 S 1,λ=546.1 nm) starts from a metastable state, which is populated in a quasi resonant charge transfer process. The resulting changes in nuclear mean square charge radii show clearly that182Hg follows the trend of the heavier, even, weakly oblate isotopes. Correspondingly the huge odd-even shape staggering in the light Hg isotopes continues and the nuclear shape staggering and shape coexistence persists down to the last isotope inv…

research product

Laser applications in nuclear physics

research product

Nuclear Radiation Detected Optical Pumping of neutron-deficient Hg isotopes

The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 06s6p 3P1,λ=2,537 A resonance line of the investigated isotope and the Hg lamp. The orientation built up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magneti…

research product

Towards Shorter-Lived Nuclides in ISOLTRAP Mass Measurements

Recently, the applicability of Penning trap mass spectrometry has been extended to nuclides with a half-life of less than one second. The mass of 33Ar(T 1/2 = 174 ms) was measured using the ISOLTRAP spectrometer with an accuracy of 4.2 keV. This measurement provided a stringent test of the Isobaric Multiplet Mass Equation (IMME) at mass number A = 33 and isospin T = 3/2. The fast measurement cycle that shows the way to other measurements of very-short-lived nuclides is presented. Furthermore, the results of the IMME test are displayed.

research product

Determination of spin, magnetic moment and isotopic shift of neutron rich205Hg by optical pumping

Neutron rich205Hg (T 1/2=5.2 min) was produced and on-line mass separated at the ISOLDE facility at CERN. The polarization achieved by optical pumping via the atomic line (6s 21 S 0↔6s6p 3 P 1,λ=2 537A) was monitored by theβ decay asymmetry. Hyperfine structure and isotopic shift of the205Hg absorption line was determined by Zeeman scanning. In addition a magnetic resonance was performed on the polarized205Hg nuclei in the atomic ground state. The results are: $$I(^{205} Hg) = \tfrac{1}{2}$$ (confirmed);μ I (205Hg)=0.5915 (1)μ N (uncorrected for diamagnetism); isotopic shiftδv204/205=v(205Hg)-v(204Hg)=−1.8 (1) GHz.μ I and IS are discussed briefly in the frame of current literature.

research product

Spins, moments and charge radii in the isotopic series181Hg-191Hg

The hyperfine structure splitting and the isotope shift in the (6 s2 1S0 - 6s 6p3P1,λ=2,537 A) line of very neutron deficient Hg isotopes were determined by the β radiation detected optical pumping method (β-RADOP). In addition, nuclear magnetic resonance was observed in the atomic ground state. The results are Mean-square nuclear charge radii are calculated. Interpreting the sudden change of nuclear radius between187Hg and185Hg δ〈r2〉187,185=0.42(5)fm2 as oblate-prolate shape transition, one obtains δ〈β2〉 =0.054(5).

research product

Nuclear spins of76Rb and119Cs by? radiation detected optical pumping

An optical pumping apparatus has been attached to the reconstructed ISOLDE on-line mass separator at CERN in order to obtain nuclear data of isotopes far fromβ stability. As first results the spins of76Rb (T 1/2=36.8 s) and119Cs (T 1/2=37.7 s) have been determined byβ radiation detected optical pumping (β-RADOP) to beI=1 andI=9/2 respectively.

research product

Ionization energy ofLi6,7determined by triple-resonance laser spectroscopy

Rydberg level energies for $^{7}\mathrm{Li}$ were measured using triple-resonance laser excitation, followed by drifted field ionization. In addition to the principal $n\phantom{\rule{0.2em}{0ex}}^{2}P$ series, weak Stark mixing from residual electric fields allowed observation of $n\phantom{\rule{0.2em}{0ex}}^{2}S$ and hydrogenic Stark manifold series at higher $n$. Limit analyses for the series yield the spectroscopic ionization energy ${E}_{I}(^{7}\mathrm{Li})=43\phantom{\rule{0.2em}{0ex}}487.159\phantom{\rule{0.2em}{0ex}}40(18)\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$. The $^{6,7}\mathrm{Li}$ isotope shift (IS) was measured in selected $n\phantom{\rule{0.2em}{0ex}}^{2}…

research product

Mass Measurement on therp-Process Waiting PointKr72

With the aim of improving nucleosynthesis calculations, we performed for the first time, a direct high-precision mass measurement on the waiting point in the astrophysical rp-process 72Kr. We used the ISOLTRAP Penning trap mass spectrometer located at ISOLDE/CERN. The measurement yielded a relative mass uncertainty of δm/m = 1.2×10-7. In addition, the masses of 73Kr and 74Kr were measured directly with relative mass uncertainties of 1.0×10-7 and 3×10-8, respectively. We analyzed the role of 72Kr in the rp-process during X-ray bursts using the ISOLTRAP and previous mass values of 72-74Kr.

research product