Search results for "Sprague-Dawley"

showing 10 items of 642 documents

Peripapillary fluorescence lifetime reveals age-dependent changes using fluorescence lifetime imaging ophthalmoscopy in rats

2017

Abstract Many fundus diseases accompany fundus autofluorescence change. Fluorescence lifetime imaging ophthalmoscope (FLIO) is a latest technique in imaging fundus autofluorescence. With FLIO, the fundus fluorescence lifetime (FLT) is recorded topographically, assisting to diagnose and monitor multiple fundus diseases. The purpose of this study was to evaluate the repeatability of FLT using FLIO on adult rats and to analyze the age-dependency of the peripapillary FLT of the fundus in a short spectral channel (498–560 nm) and a long spectral channel (560–720 nm). Sprague Dawley rats (n of eyes = 10) were used for repeatability experiments. Age-dependent changes were investigated in young (tw…

0301 basic medicineAgingmedicine.medical_specialtyFluorescence-lifetime imaging microscopygenetic structuresFundus OculiOptic DiskAge dependentFundus (eye)FluorescenceRetinaRats Sprague-DawleyOphthalmoscopy03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineOphthalmologySprague dawley ratsAnimalsMedicineFluorescein Angiographymedicine.diagnostic_testbusiness.industryReproducibility of ResultsRepeatabilityFluorescenceeye diseasesSensory SystemsFundus autofluorescenceRatsOphthalmoscopyOphthalmology030104 developmental biologyModels Animal030221 ophthalmology & optometryFemalesense organsbusinessExperimental Eye Research
researchProduct

Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mP…

2016

Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal n…

0301 basic medicineAgonistMaleDendritic spineArticle SubjectGlycoside Hydrolasesmedicine.drug_classDendritic SpinesPrefrontal CortexNeural Cell Adhesion Molecule L1NeurotransmissionInhibitory postsynaptic potentialbehavioral disciplines and activitiesSynaptic Transmissionlcsh:RC321-571Rats Sprague-Dawley03 medical and health sciences0302 clinical medicineDopamineDopamine receptor D2PhenethylaminesmedicineAnimalslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryChemistryReceptors Dopamine D2Pyramidal CellsGlutamate receptorRats030104 developmental biologyNeurologynervous systemDopamine AgonistsSialic AcidsNeural cell adhesion moleculeNeurology (clinical)Neuroscience030217 neurology & neurosurgerymedicine.drugResearch ArticleNeural plasticity
researchProduct

A receptor-antibody hybrid hampering MET-driven metastatic spread

2021

AbstractBackgroundThe receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (METaddiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (METexpedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition.MethodsIn this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by ‘head-to-tail’ or ‘tail-to-head’ fusion of a sin…

0301 basic medicineCancer ResearchImmunoconjugatesmedicine.medical_treatmentMice SCIDEpitopeFusion proteins; HGF; MET; Metastasis; Targeted therapy; A549 Cells; Animals; Binding Sites Antibody; Cell Line Tumor; Cell Proliferation; Female; Hepatocyte Growth Factor; Humans; Immunoconjugates; Immunoglobulin Fab Fragments; Mice; Mice SCID; Neoplasm Metastasis; Neoplasms; Proto-Oncogene Proteins c-met; Rats; Rats Sprague-Dawley; Recombinant Proteins; Xenograft Model Antitumor AssaysMetastasisTargeted therapyMetastasisRats Sprague-DawleyTargeted therapyMice0302 clinical medicineNeoplasmsHGFNeoplasm MetastasisReceptorTumorHepatocyte Growth FactorChemistryProto-Oncogene Proteins c-metlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensRecombinant ProteinsOncology030220 oncology & carcinogenesisMETFemaleHepatocyte growth factormedicine.drugSCIDlcsh:RC254-282Cell LineImmunoglobulin Fab Fragments03 medical and health sciencesCell Line TumorPancreatic cancermedicineAnimalsHumansAntibodyCell ProliferationBinding SitesResearchmedicine.diseaseXenograft Model Antitumor AssaysFusion proteinRatsFusion proteins030104 developmental biologyA549 CellsCancer cellCancer researchBinding Sites AntibodySprague-DawleyJournal of Experimental & Clinical Cancer Research
researchProduct

Low-energy extracorporeal shockwave therapy (ESWT) improves metaphyseal fracture healing in an osteoporotic rat model.

2017

Purpose As result of the current demographic changes, osteoporosis and osteoporotic fractures are becoming an increasing social and economic burden. In this experimental study, extracorporeal shock wave therapy (ESWT), was evaluated as a treatment option for the improvement of osteoporotic fracture healing. Methods A well-established fracture model in the metaphyseal tibia in the osteoporotic rat was used. 132 animals were divided into 11 groups, with 12 animals each, consisting of one sham-operated group and 10 ovariectomized (osteoporotic) groups, of which 9 received ESWT treatment. Different energy flux intensities (0.15 mJ/mm2, 0.35 mJ/mm2, or 0.55 mJ/mm2) as well as different numbers o…

0301 basic medicineExtracorporeal Shockwave TherapyCritical Care and Emergency Medicinemedicine.medical_treatmentOsteoporosisTest StatisticsDentistryGene Expressionlcsh:MedicineRats Sprague-Dawley0302 clinical medicineMathematical and Statistical TechniquesAnimal CellsMedicine and Health SciencesReproductive System ProceduresConnective Tissue Diseaseslcsh:ScienceMusculoskeletal SystemTrauma MedicineConnective Tissue CellsFracture Healing030222 orthopedicsMultidisciplinaryBiomechanicsBone FractureConnective TissueExtracorporeal shockwave therapyPhysical SciencesOvariectomized ratFemaleAnatomyCellular TypesTraumatic InjuryStatistics (Mathematics)Research ArticleOvariectomySurgical and Invasive Medical ProceduresBone healingResearch and Analysis Methods03 medical and health sciencesRheumatologymedicineGeneticsAnimalsTibiaStatistical MethodsSkeletonAnalysis of VarianceOsteoblastsSurgical ExcisionTibiabusiness.industrylcsh:RBiology and Life SciencesBone fractureCell Biologymedicine.diseaseRatsDisease Models Animal030104 developmental biologyBiological TissueAdjunctive treatmentOsteoporosislcsh:QbusinessOsteoporotic FracturesMathematicsPLoS ONE
researchProduct

Heterozygous deletion of the LRFN2 gene is associated with working memory deficits

2016

International audience; Learning disabilities (LDs) are a clinically and genetically heterogeneous group of diseases. Array-CGH and high-throughput sequencing have dramatically expanded the number of genes implicated in isolated intellectual disabilities and LDs, highlighting the implication of neuron-specific post-mitotic transcription factors and synaptic proteins as candidate genes. We report a unique family diagnosed with autosomal dominant learning disability and a 6p21 microdeletion segregating in three patients. The 870 kb microdeletion encompassed the brain-expressed gene LRFN2, which encodes for a synaptic cell adhesion molecule. Neuropsychological assessment identified selective w…

0301 basic medicineMaleCandidate genefamilyspeechHippocampal formationRats Sprague-Dawley0302 clinical medicineBorderline intellectual functioningNeuropsychological assessmentChilddisordersGenetics (clinical)Cells Culturedadhesion-like moleculesMembrane Glycoproteinsmedicine.diagnostic_testLearning DisabilitiesBrainMagnetic Resonance Imaging3. Good healthPedigreeMemory Short-TermBrain sizeFemaleAdultHeterozygotenmda receptorautismNerve Tissue ProteinsBiologyReceptors N-Methyl-D-AspartateArticle03 medical and health sciencesFluorodeoxyglucose F18[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyexpressionGeneticsmedicineAnimalsHumansMemory DisorderslanguageGenetic heterogeneityWorking memoryMembrane Proteinsdown-syndromeRats030104 developmental biologyEndophenotypePositron-Emission TomographySynapsesshort-termRadiopharmaceuticalsNeuroscience030217 neurology & neurosurgeryGene Deletion[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Rhythmic Regulation of Photoreceptor and RPE Genes Important for Vision and Genetically Associated With Severe Retinal Diseases.

2018

Purpose The aim of the present study was to identify candidate genes for mediating daily adjustment of vision. Methods Genes important for vision and genetically associated with severe retinal diseases were tested for 24-hour rhythms in transcript levels in neuronal retina, microdissected photoreceptors, photoreceptor-related pinealocytes, and retinal pigment epithelium-choroid (RPE-choroid) complex by using quantitative PCR. Results Photoreceptors of wildtype mice display circadian clock-dependent regulation of visual arrestins (Arr1, Arr4) and the visual cycle gene Rdh12, whereas cells of the RPE-choroid exhibit light-dependent regulation of the visual cycle key genes Lrat, Rpe65, and Rdh…

0301 basic medicineMaleCandidate genegenetic structuresArrestinsRetinal Pigment EpitheliumBiologyRetinaPinealocyte570 Life sciencesvisual cyclevisual arrestinRats Sprague-Dawley03 medical and health scienceschemistry.chemical_compoundMiceRetinal DiseasesmedicineElectroretinographyAnimalsCircadian rhythmVision OcularRetinaDiabetic Retinopathymedicine.diagnostic_testRetinal DehydrogenaseRetinalcircadian regulationeye diseasesCell biologyCircadian RhythmRatsMice Inbred C57BLAlcohol OxidoreductasesDisease Models Animal030104 developmental biologymedicine.anatomical_structureRPE65chemistryGene Expression RegulationRetinal Cone Photoreceptor CellsFemalesense organsElectroretinographyVisual phototransduction570 BiowissenschaftenInvestigative ophthalmologyvisual science
researchProduct

Synergistic action of CB1 and 5-HT2B receptors in preventing pilocarpine-induced status epilepticus in rats

2019

Abstract Endocannabinoids (eCBs) and serotonin (5-HT) play a neuromodulatory role in the central nervous system. Both eCBs and 5-HT regulate neuronal excitability and their pharmacological potentiation has been shown to control seizures in pre-clinical and human studies. Compelling evidence indicates that eCB and 5-HT systems interact to modulate several physiological and pathological brain functions, such as food intake, pain, drug addiction, depression, and anxiety. Nevertheless, there is no evidence of an eCB/5-HT interaction in experimental and human epilepsies, including status epilepticus (SE). Here, we performed video-EEG recording in behaving rats treated with the pro-convulsant age…

0301 basic medicineMaleCannabinoid receptormedicine.medical_treatmentPharmacologySettore BIO/09 - Fisiologia0302 clinical medicineStatus Epilepticus5-HT2BEEGStatus epilepticuPilocarpineCalcium Channel BlockersEndocannabinoid systemCB1Clinical applicationNeurologyPilocarpinemedicine.symptommedicine.drugReceptorAM251AgonistSerotoninEndocannabinoid systemmedicine.drug_classMorpholinesCannabinoid receptors; Clinical applications; EEG; Endocannabinoid system; Serotonin; Status epilepticus; Synergistic interactions; Animals; Benzoxazines; Calcium Channel Blockers; Male; Morpholines; Muscarinic Agonists; Naphthalenes; Pilocarpine; Rats; Rats Sprague-Dawley; Receptor Cannabinoid CB1; Receptor Serotonin 5-HT2B; Serotonin 5-HT2 Receptor Agonists; Status EpilepticusStatus epilepticusClinical applicationsMuscarinic AgonistsNaphthaleneslcsh:RC321-57103 medical and health sciencesmedicineAnimalsCannabinoid receptorslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryCannabinoidbusiness.industryAntagonistSynergistic interactionsBenzoxazinesRats030104 developmental biologySerotoninCannabinoidSprague-Dawleybusiness030217 neurology & neurosurgerySerotonin 5-HT2 Receptor Agonists
researchProduct

Targeting aurora kinase B alleviates spinal microgliosis and neuropathic pain in a rat model of peripheral nerve injury.

2019

Peripheral nerve injury elicits spinal microgliosis, contributing to neuropathic pain. The aurora kinases A (AURKA), B (AURKB), and C (AURKC) are potential therapeutic targets in proliferating cells. However, their role has not been clarified in microglia. The aim of this study was to examine the regulation of aurora kinases and their roles and druggability in spinal microgliosis and neuropathic pain. Sprague-Dawley rats received chronic constriction injury (CCI). Gene expression of aurora kinases A-C was evaluated by quantitative RT-PCR and western blot, respectively, in spinal cords at 1, 3, 7, and 14 days after CCI. AURKB gene and protein expression was up-regulated concomitantly with th…

0301 basic medicineMaleDown-RegulationGene ExpressionMicrogliosisBiochemistryRats Sprague-Dawley03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinePeripheral Nerve InjuriesMedicineAnimalsAurora Kinase BAURKB GeneEnzyme InhibitorsGene knockdownMicrogliabusiness.industryKinaseSpinal cordRatsDisease Models Animal030104 developmental biologymedicine.anatomical_structureSpinal CordGene Knockdown TechniquesPeripheral nerve injuryNeuropathic painCancer researchNeuralgiaMicrogliabusiness030217 neurology & neurosurgeryJournal of neurochemistryReferences
researchProduct

Odiparcil, a potential glycosaminoglycans clearance therapy in mucopolysaccharidosis VI—Evidence from in vitro and in vivo models

2020

International audience; Mucopolysaccharidoses are a class of lysosomal storage diseases, characterized by enzymatic deficiency in the degradation of specific glycosaminoglycans (GAG). Pathological accumulation of excess GAG leads to multiple clinical symptoms with systemic character, most severely affecting bones, muscles and connective tissues. Current therapies include periodic intravenous infusion of supplementary recombinant enzyme (Enzyme Replacement Therapy-ERT) or bone marrow transplantation. However, ERT has limited efficacy due to poor penetration in some organs and tissues. Here, we investigated the potential of the β-D-xyloside derivative odiparcil as an oral GAG clearance therap…

0301 basic medicineMaleMucopolysaccharidosis type VIRespiratory SystemAdministration OralGlycosaminoglycanRats Sprague-DawleyWhite Blood CellsMice0302 clinical medicineOral administrationAnimal CellsMedicine and Health SciencesGlycosidesCells CulturedConnective Tissue CellsGlycosaminoglycansMultidisciplinaryMucopolysaccharidosis VIChemistryChondroitin SulfatesQRMucopolysaccharidosis VIAnimal Models3. Good healthTracheamedicine.anatomical_structureExperimental Organism SystemsConnective Tissue[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyMedicineFemaleBiological CulturesCellular TypesAnatomyCellular Structures and OrganellesResearch Articlemedicine.medical_specialtyImmune CellsScienceImmunologyDermatan SulfateMouse ModelsIn Vitro TechniquesResearch and Analysis Methods03 medical and health sciencesModel OrganismsIn vivoInternal medicinemedicineAnimalsHumansBlood CellsCartilageBiology and Life SciencesEndothelial CellsKidneysCell BiologyRenal SystemFibroblastsCell CulturesIn vitroMice Mutant StrainsRatsMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinologyBiological TissueCartilageCell cultureAnimal Studies[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyCattleLysosomes030217 neurology & neurosurgery
researchProduct

Nonacidic Farnesoid X Receptor Modulators.

2017

As a cellular bile acid sensor, farnesoid X receptor (FXR) participates in regulation of bile acid, lipid and glucose homeostasis, and liver protection. Clinical results have validated FXR as therapeutic target in hepatic and metabolic diseases. To date, potent FXR agonists share a negatively ionizable function that might compromise their pharmacokinetic distribution and behavior. Here we report the development and characterization of a high-affinity FXR modulator not comprising an acidic residue.

0301 basic medicineMalemedicine.drug_classPyridinesPeroxisome proliferator-activated receptorReceptors Cytoplasmic and NuclearATP-binding cassette transporterCholesterol 7 alpha-hydroxylase01 natural sciencesRats Sprague-Dawley03 medical and health sciencesStructure-Activity RelationshipDrug StabilityDrug DiscoverymedicineGlucose homeostasisAnimalsHumansPPAR alphaReceptorCholesterol 7-alpha-HydroxylaseATP Binding Cassette Transporter Subfamily B Member 11chemistry.chemical_classificationBile acid010405 organic chemistryChemistryHEK 293 cellsImidazolesMembrane Transport ProteinsHep G2 Cells0104 chemical sciencesMolecular Docking SimulationZolpidem030104 developmental biologyHEK293 CellsBiochemistryMolecular MedicineFarnesoid X receptorATP-Binding Cassette TransportersSterol Regulatory Element Binding Protein 1HeLa CellsJournal of medicinal chemistry
researchProduct