6533b86dfe1ef96bd12caa9e
RESEARCH PRODUCT
A receptor-antibody hybrid hampering MET-driven metastatic spread
Elisa VignaPaolo M. ComoglioCristina ChiriacoCristina BasilicoChiara ModicaNicla Borrellisubject
0301 basic medicineCancer ResearchImmunoconjugatesmedicine.medical_treatmentMice SCIDEpitopeFusion proteins; HGF; MET; Metastasis; Targeted therapy; A549 Cells; Animals; Binding Sites Antibody; Cell Line Tumor; Cell Proliferation; Female; Hepatocyte Growth Factor; Humans; Immunoconjugates; Immunoglobulin Fab Fragments; Mice; Mice SCID; Neoplasm Metastasis; Neoplasms; Proto-Oncogene Proteins c-met; Rats; Rats Sprague-Dawley; Recombinant Proteins; Xenograft Model Antitumor AssaysMetastasisTargeted therapyMetastasisRats Sprague-DawleyTargeted therapyMice0302 clinical medicineNeoplasmsHGFNeoplasm MetastasisReceptorTumorHepatocyte Growth FactorChemistryProto-Oncogene Proteins c-metlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensRecombinant ProteinsOncology030220 oncology & carcinogenesisMETFemaleHepatocyte growth factormedicine.drugSCIDlcsh:RC254-282Cell LineImmunoglobulin Fab Fragments03 medical and health sciencesCell Line TumorPancreatic cancermedicineAnimalsHumansAntibodyCell ProliferationBinding SitesResearchmedicine.diseaseXenograft Model Antitumor AssaysFusion proteinRatsFusion proteins030104 developmental biologyA549 CellsCancer cellCancer researchBinding Sites AntibodySprague-Dawleydescription
AbstractBackgroundThe receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (METaddiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (METexpedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition.MethodsIn this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by ‘head-to-tail’ or ‘tail-to-head’ fusion of a single chain Fab derived from the DN30 MET antibody with a recombinant ‘ad-hoc’ engineered MET extracellular domain (decoyMET), encompassing the HGF binding site but lacking the DN30 epitope.ResultsThe hybrid molecules correctly bind MET and HGF, inhibit HGF-induced MET downstream signaling, and quench HGF-driven biological responses, such as growth, motility and invasion, in cancer cells of different origin. Two metastatic models were generated in mice knocked-in by the human HGF gene: (i) orthotopic transplantation of pancreatic cancer cells; (ii) subcutaneous injection of primary cells derived from a cancer of unknown primary. Treatment with hybrid molecules strongly affects time of onset, number, and size of metastatic lesions.ConclusionThese results provide a strategy to treat metastatic dissemination driven by the HGF/MET axis.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-14 | Journal of Experimental & Clinical Cancer Research |