Search results for "Squash"
showing 10 items of 54 documents
Entanglement in Gaussian matrix-product states
2006
Gaussian matrix product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of an harmonic chain. Replacing the projections by associated Gaussian states, the 'building blocks', we show that the entanglement range in translationally-invariant Gaussian matrix product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix…
Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization
2014
Topological order in a 2d quantum matter can be determined by the topological contribution to the entanglement R\'enyi entropies. However, when close to a quantum phase transition, its calculation becomes cumbersome. Here we show how topological phase transitions in 2d systems can be much better assessed by multipartite entanglement, as measured by the topological geometric entanglement of blocks. Specifically, we present an efficient tensor network algorithm based on Projected Entangled Pair States to compute this quantity for a torus partitioned into cylinders, and then use this method to find sharp evidence of topological phase transitions in 2d systems with a string-tension perturbation…
Heat Capacity and Entanglement Measure in a simple two-qubit model
2011
A simple two-qubit model showing Quantum Phase Transitions as a consequence of ground state level crossings is studied in detail. Using the Concurrence of the system as an entanglement measure and heat capacity as a marker of thermodynamical properties, an analytical expression giving the latter in terms of the former is obtained. A protocol allowing an experimental measure of entanglement is then presented and compared with a related proposal recently reported by Wie\'sniak, Vedral and Brukner
Nonclassical correlations in superconducting circuits
2009
A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effect of their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted.
Thermal localizable entanglement in a simple multipartite system
2009
The quantum correlations present in a system of three coupled spins 12 in a thermal state are investigated. Localizable entanglement, as well as concurrence function, is exactly evaluated. The results obtained show the existence of a temperature range corresponding to which it is impossible to localize entanglement.
Entanglement and heat capacity in a two-atom Bose–Hubbard model
2012
Abstract We show that a two-atom Bose–Hubbard model exhibits three different phases in the behavior of thermal entanglement in its parameter space. These phases are demonstrated to be traceable back to the existence of level crossings in the ground state of the same system. Significant similarities between the behaviors of thermal entanglement and heat capacity in the parameter space are brought to light thus allowing to interpret the occurrence and the meaning of all these three phases.
An algebraic approach to the study of multipartite entanglement
2012
A simple algebraic approach to the study of multipartite entanglement for pure states is introduced together with a class of suitable functionals able to detect entanglement. On this basis, some known results are reproduced. Indeed, by investigating the properties of the introduced functionals, it is shown that a subset of such class is strictly connected to the purity. Moreover, a direct and basic solution to the problem of the simultaneous maximization of three appropriate functionals for three-qubit states is provided, confirming that the simultaneous maximization of the entanglement for all possible bipartitions is compatible only with the structure of GHZ-states.
Entanglement replication in driven-dissipative many body systems
2012
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Multipartite entanglement in three-mode Gaussian states of continuous variable systems: Quantification, sharing structure and decoherence
2005
We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monog…