Search results for "Stein"

showing 10 items of 1448 documents

Helicobacter pylori and Epstein–Barr Virus Infection in Gastric Diseases: Correlation with IL-10 and IL1RN Polymorphism

2019

Introduction. Helicobacter pylori and Epstein–Barr virus (EBV) infection have recently been shown to be associated with gastric diseases. Polymorphisms in genes encoding cytokines such as interleukin 10 (IL-10) and interleukin 1 Receptor (IL-1RN) influence cytokine secretion levels and appear to contribute to the risk of developing gastroduodenal diseases. To our knowledge, this is the first preliminary study to address the association of coinfection with H. pylori and EBV and their correlation with genetic predisposition in the development of gastric diseases. Methods. Gastric biopsy samples of 96 patients with different gastric diseases were used. Results. Our results showed that the rate…

0301 basic medicineSettore MED/07 - Microbiologia E Microbiologia ClinicaArticle Subjectpolymorphism gastric cancer IL-10Chronic gastritislcsh:RC254-28203 medical and health sciences0302 clinical medicineEBVHelicobactermedicineCagAEpstein–Barr virus infectionbiologybusiness.industryMALT lymphomaHelicobacter pylorimedicine.diseasebiology.organism_classificationlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensdigestive system diseases030104 developmental biologyOncology030220 oncology & carcinogenesisImmunologyCoinfectionCytokine secretionGastritismedicine.symptombusinessResearch ArticleJournal of Oncology
researchProduct

Targeting Bacterial Sortase A with Covalent Inhibitors: 27 New Starting Points for Structure-Based Hit-to-Lead Optimization.

2019

Because of its essential role as a bacterial virulence factor, enzyme sortase A (SrtA) has become an attractive target for the development of new antivirulence drugs against Gram-positive infections. Here we describe 27 compounds identified as covalent inhibitors of

0301 basic medicineStaphylococcus aureusMagnetic Resonance SpectroscopyAntivirulenceVirulence Factors030106 microbiologySmall Molecule Libraries03 medical and health sciencesMiceBacterial ProteinsCatalytic DomainDrug DiscoveryAnimalschemistry.chemical_classificationBinding SitesChemistryHit to leadFibroblastsAminoacyltransferasesAnti-Bacterial AgentsMolecular Docking SimulationCysteine Endopeptidases030104 developmental biologyInfectious DiseasesEnzymeBiochemistryCovalent bondSortase ABacterial virulenceNIH 3T3 CellsStructure basedACS infectious diseases
researchProduct

Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei

2016

A series of dipeptide nitriles known as inhibitors of mammalian cathepsins were evaluated for inhibition of rhodesain, the cathepsin L-like protease of Trypanosoma brucei. Compound 35 consisting of a Leu residue fitting into the S2 pocket and a triarylic moiety consisting of thiophene, a 1,2,4-oxadiazole and a phenyl ring fitting into the S3 pocket, and compound 33 with a 3-bromo-Phe residue (S2) and a biphenyl fragment (S3) were found to inhibit rhodesain in the single-digit nanomolar range. The observed steep structure-activity relationship could be explained by covalent docking simulations. With their high selectivity indices (ca. 200) and the good antitrypanosomal activity (8μM) the com…

0301 basic medicineStereochemistrymedicine.medical_treatmentTrypanosoma brucei bruceiClinical BiochemistryAntitubercular AgentsPharmaceutical ScienceCysteine Proteinase InhibitorsTrypanosoma bruceiBiochemistryCysteine Proteinase InhibitorsStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundNitrilesDrug DiscoverymedicineStructure–activity relationshipMoietyMolecular BiologyProteaseDipeptideDose-Response Relationship DrugMolecular StructurebiologyChemistryOrganic ChemistryDipeptidesbiology.organism_classificationCysteine proteaseCysteine Endopeptidases030104 developmental biologyDocking (molecular)Molecular MedicineBioorganic & Medicinal Chemistry Letters
researchProduct

Novel Opportunities for Cathepsin S Inhibitors in Cancer Immunotherapy by Nanocarrier-Mediated Delivery

2020

Cathepsin S (CatS) is a secreted cysteine protease that cleaves certain extracellular matrix proteins, regulates antigen presentation in antigen-presenting cells (APC), and promotes M2-type macrophage and dendritic cell polarization. CatS is overexpressed in many solid cancers, and overall, it appears to promote an immune-suppressive and tumor-promoting microenvironment. While most data suggest that CatS inhibition or knockdown promotes anti-cancer immunity, cell-specific inhibition, especially in myeloid cells, appears to be important for therapeutic efficacy. This makes the design of CatS selective inhibitors and their targeting to tumor-associated M2-type macrophages (TAM) and DC an attr…

0301 basic medicineT-Lymphocytesmedicine.medical_treatmentReview02 engineering and technologyCancer immunotherapyNeoplasmsTumor-Associated MacrophagesTumor Microenvironmentcysteine proteaseMolecular Targeted TherapySulfoneslcsh:QH301-705.5Cathepsin SAntigen PresentationDrug Carrierscysteine cathepsintumor-associated macrophage (TAM)ChemistrynanoparticleAzepinesDipeptidesGeneral Medicine021001 nanoscience & nanotechnologyGene Expression Regulation NeoplasticImmunotherapy0210 nano-technologydendritic cellAntigen presentationAntineoplastic AgentsTumor-associated macrophageM2 macrophage03 medical and health sciencesLeucinemedicineHumansProtease InhibitorsAntigen-presenting celltargetingtherapypolarizationTumor microenvironmentT cellDendritic CellsDendritic cellextracellular matrix (ECM)Cathepsinstumor associated macrophage030104 developmental biologylcsh:Biology (General)antigen presenting cellCancer researchNanoparticlesimmune suppressionNanocarriers
researchProduct

Alternative Splice Forms of CYLD Mediate Ubiquitination of SMAD7 to Prevent TGFB Signaling and Promote Colitis

2018

Background & Aims The CYLD lysine 63 deubiquitinase gene (CYLD) encodes tumor suppressor protein that is mutated in familial cylindromatosus, and variants have been associated with Crohn disease (CD). Splice forms of CYLD that lack exons 7 and 8 regulate transcription factors and functions of immune cells. We examined the expression of splice forms of CYLD in colon tissues from patients with CD and their effects in mice. Methods We performed immunohistochemical analyses of colon tissues from patients with untreated CD and patients without inflammatory bowel diseases (controls). We obtained mice that expressed splice forms of CYLD (sCYLD mice) without or with SMAD7 (sCYLD/SMAD7 mice) from tr…

0301 basic medicineTranscription FactorBiopsyInbred C57BLTransgenicImmune RegulationSettore MED/12MiceRandom Allocation0302 clinical medicineCrohn DiseaseReference ValuesNeedleIntestinal Mucosaintegumentary systemChemistryBiopsy NeedleGastroenterologyT helper cellFlow CytometryPost-translational ModificationImmunohistochemistryDeubiquitinating Enzyme CYLDCysteine Endopeptidasesmedicine.anatomical_structure030211 gastroenterology & hepatologyTumor necrosis factor alphaSignal TransductionGenetically modified mouseRegulatory T cellTransgeneMice TransgenicSmad7 ProteinTransforming Growth Factor beta103 medical and health sciencesImmune systemmedicineAnimalsHumansCytokine SignalingHepatologyAnimalHEK 293 cellsUbiquitinationMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyDisease ModelsCytokine Signaling; Immune Regulation; Post-translational Modification; Transcription Factor; Biopsy Needle; Crohn Disease; Cysteine Endopeptidases; Deubiquitinating Enzyme CYLD; Disease Models Animal; Flow Cytometry; Immunohistochemistry; Intestinal Mucosa; Mice Inbred C57BL; Mice Transgenic; Random Allocation; Reference Values; Signal Transduction; Smad7 Protein; Transforming Growth Factor beta1; UbiquitinationTransforming growth factorGastroenterology
researchProduct

2 H-1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Trypanocidal Rhodesain Inhibitors by Structure-Based Design.

2018

Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition (Ki values) and in vitro cell-growth of Trypanosoma brucei rhodesiense (I…

0301 basic medicineTrypanosoma brucei rhodesienseStereochemistrySwineTrypanosoma cruziPlasmodium falciparumTriazoleProtozoan ProteinsCysteine Proteinase InhibitorsLigands01 natural sciencesCysteine Proteinase InhibitorsCell LineCathepsin L03 medical and health scienceschemistry.chemical_compoundMiceStructure-Activity RelationshipIn vivoDrug DiscoveryNitrilesStructure–activity relationshipAnimalsHumansATP Binding Cassette Transporter Subfamily B Member 1Trypanocidal agentBinding SitesbiologyMolecular Structure010405 organic chemistryChemistryTrypanosoma brucei rhodesienseDipeptidesTriazolesCysteine proteaseTrypanocidal Agents0104 chemical sciencesRatsCysteine Endopeptidases030104 developmental biologyDrug Designbiology.proteinMicrosomes LiverMolecular MedicineFemaleLeishmania donovaniJournal of medicinal chemistry
researchProduct

Targeting of the Leishmania Mexicana cysteine protease CPB2.8 ΔCTE by decorated fused benzo[b] thiophene scaffold.

2016

A potent and highly selective anhydride-based inhibitor of Leishmania mexicana cysteine protease CPB2.8ΔCTE (IC50 = 3.7 μM) was identified. The details of the interaction of the ligand with the enzyme active site were investigated by NMR biomimetic experiments and docking studies. Results of inhibition assays, NMR and theoretical studies indicate that the ligand acts initially as a non-covalent inhibitor and later as an irreversible covalent inhibitor by chemoselective attack of CYS 25 thiolate to an anhydride carbonyl.

0301 basic medicinebiology010405 organic chemistryChemistryStereochemistryGeneral Chemical EngineeringActive siteGeneral ChemistryHighly selectivebiology.organism_classification01 natural sciencesCysteine proteaseLeishmania mexicana0104 chemical sciences03 medical and health scienceschemistry.chemical_compound030104 developmental biologyCovalent bondDocking (molecular)biology.proteinThiopheneDRUG DISCOVERY SOFTWARE NEWS FORCE-FIELD CATHEPSIN-L INHIBITORS OPTIMIZATION TRYPANOSOMIASIS IDENTIFICATION PROTEINASES VALIDATIONIC50
researchProduct

Modern diversification of the amino acid repertoire driven by oxygen

2017

All extant life employs the same 20 amino acids for protein biosynthesis. Studies on the number of amino acids necessary to produce a foldable and catalytically active polypeptide have shown that a basis set of 7-13 amino acids is sufficient to build major structural elements of modern proteins. Hence, the reasons for the evolutionary selection of the current 20 amino acids out of a much larger available pool have remained elusive. Here, we have analyzed the quantum chemistry of all proteinogenic and various prebiotic amino acids. We find that the energetic HOMO-LUMO gap, a correlate of chemical reactivity, becomes incrementally closer in modern amino acids, reaching the level of specialize…

0301 basic medicinechemistry.chemical_classificationMultidisciplinarySelenocysteineChemistryRadicalOrigin of LifeTryptophanGenetic codeAmino acidOxygen03 medical and health scienceschemistry.chemical_compound030104 developmental biologyModels ChemicalBiochemistryAbiogenesisPhysical SciencesProtein biosynthesisAmino AcidsTyrosineProceedings of the National Academy of Sciences
researchProduct

Characterization of sulfhydryl oxidase from Aspergillus tubingensis

2017

Background Despite of the presence of sulfhydryl oxidases (SOXs) in the secretomes of industrially relevant organisms and their many potential applications, only few of these enzymes have been biochemically characterized. In addition, basic functions of most of the SOX enzymes reported so far are not fully understood. In particular, the physiological role of secreted fungal SOXs is unclear. Results The recently identified SOX from Aspergillus tubingensis (AtSOX) was produced, purified and characterized in the present work. AtSOX had a pH optimum of 6.5, and showed a good pH stability retaining more than 80% of the initial activity in a pH range 4-8.5 within 20 h. More than 70% of the initia…

0301 basic medicineentsyymitBOVINE-MILKThioredoxin reductaselcsh:Animal biochemistryBiochemistrySubstrate Specificitychemistry.chemical_compoundNonribosomal peptide synthesisEnzyme Stabilitylcsh:QD415-436DisulfidesDISULFIDE BONDSPeptide Synthaseschemistry.chemical_classificationbiologyGliotoxinChemistrynonribosomal peptide synthesisHydrogen-Ion ConcentrationGlutathioneFAMILYSOXSglutathione oxidationhomesienetAspergillusBiochemistrySENSITIVITYsecreted sulfhydryl oxidaseOxidoreductasesResearch ArticleDithiol oxidaseCofactorlcsh:Biochemistry03 medical and health sciencesNonribosomal peptideNATURAL-PRODUCTSoksidoreduktaasitBIOSYNTHESISlcsh:QP501-801Molecular Biologysecondary metabolismPURIFICATIONIDENTIFICATION030102 biochemistry & molecular biologyCXXC-MOTIFGlutathioneNIGERluonnonaineet030104 developmental biologyEnzymedithiol oxidasebiology.protein1182 Biochemistry cell and molecular biologyAspergillus tubingensisSecreted sulfhydryl oxidaseSecondary metabolismGlutathione oxidationCysteineBMC Biochemistry
researchProduct

Metabolism and Bioactivation of Corynoline With Characterization of the Glutathione/Cysteine Conjugate and Evaluation of Its Hepatotoxicity in Mice

2018

Corynoline (CRL), an isoquinoline alkaloid, is the major constituent derived from Corydalis bungeana Herba, which is a well-known Chinese herbal medicine widely used in many prescriptions. The purpose of this study was to comprehensively investigate the metabolism and bioactivation of CRL, and identify the CYP450 isoforms involved in reactive ortho-benzoquinone metabolites formation and evaluate its hepatotoxicity in mice. Here, high resolution and triple quadrupole mass spectrometry were used for studying the metabolism of CRL. Three metabolites (M1-M3) and four glutathione conjugates (M4-M7) of CRL ortho-benzoquinone reactive metabolite were found in vitro using rat and human liver micros…

0301 basic medicinehepatotoxicityCorynolinePharmacology03 medical and health scienceschemistry.chemical_compoundPharmacology (medical)corynolineCYP450 enzymesOriginal Researchmass spectrometryPharmacologybioactivationCYP3A4Alkaloidlcsh:RM1-950fungifood and beveragesMetabolismGlutathionelcsh:Therapeutics. Pharmacology030104 developmental biologychemistryToxicityMicrosomemetabolismCysteineFrontiers in Pharmacology
researchProduct