Search results for "Stem Cells"

showing 10 items of 1108 documents

Systemic Candidiasis and TLR2 Agonist Exposure Impact the Antifungal Response of Hematopoietic Stem and Progenitor Cells.

2018

We have previously demonstrated that Candida albicans induces differentiation of hematopoietic stem and progenitor cells (HSPCs) toward the myeloid lineage both in vitro and in vivo in a TLR2- and Dectin-1-dependent manner, giving rise to functional macrophages. In this work, we used an ex vivo model to investigate the functional consequences for macrophages derived from HSPCs in vivo-exposed to Pam3CSK4 (a TLR2 agonist) or C. albicans infection. Short in vivo treatment of mice with Pam3CSK4 results in a tolerized phenotype of ex vivo HSPC-derived macrophages, whereas an extended Pam3CSK4 treatment confers a trained phenotype. Early during candidiasis, HSPCs give rise to macrophages trained…

0301 basic medicineMicrobiology (medical)medicine.medical_treatmenthematopoietic stem and progenitor cellsImmunologylcsh:QR1-502Colony Count MicrobialBiologyKidneyMicrobiologylcsh:Microbiology03 medical and health sciencesLipopeptidesMiceCandida albicansmedicineTLR2host-pathogen interactionsMacrophageAnimalsProgenitor cellCandida albicansinnate immunityInnate immune systemMacrophagesCandidiasisCell Differentiationbiology.organism_classificationmedicine.diseaseHematopoietic Stem CellsToll-Like Receptor 2Haematopoiesis030104 developmental biologyInfectious DiseasesCytokineImmunologySystemic candidiasisEx vivoSpleenFrontiers in cellular and infection microbiology
researchProduct

Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem…

2015

Aim To investigate in vitro the cytocompatibility of the calcium silicate-containing endodontic sealers MTA Fillapex and TotalFill BC Sealer on human periodontal ligament stem cells (hPDLSCs) by assaying their biological responses and compare them with that observed when using an epoxy resin-based sealer (AH Plus). Methodology Specimens from the three different endodontic sealers were eluated with culture medium for 24 h. The cytotoxicity of these eluates was evaluated using the MTT assay. In addition, an in vitro scratch wound healing model was used to determine their effects on cell migration. Cell adhesion to collagen type I after treatment with the different sealer eluates was also meas…

0301 basic medicineMineral trioxide aggregateMaterials sciencePeriodontal ligament stem cellsCell SurvivalPeriodontal LigamentCell morphologyAndrologyRoot Canal Filling Materials03 medical and health sciences0302 clinical medicineCell MovementMaterials TestingCell AdhesionHumansMTT assayCytotoxicityGeneral DentistryCells CulturedCell ProliferationCell growthSilicatesStem CellsMesenchymal stem cell030206 dentistryAdhesionCalcium Compounds030104 developmental biologyBiomedical engineeringInternational endodontic journal
researchProduct

Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials

2017

Human dental pulp stem cells (HDPSCs) are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white), an epoxy resin sealant (AH-Plus cement), and an MTA-based cement sealer (MTA-Fillapex). Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was m…

0301 basic medicineMineral trioxide aggregatelcsh:Internal medicineArticle SubjectDNA damageDentistrymedicine.disease_cause03 medical and health sciences0302 clinical medicineDental pulp stem cellsmedicineViability assaylcsh:RC31-1245Molecular Biologybusiness.industryChemistryRegeneration (biology)030206 dentistryCell Biology030104 developmental biologyCell cultureCancer researchbusinessGenotoxicityOxidative stressResearch ArticleStem Cells International
researchProduct

Stem Cell-Derived, microRNA-Carrying Extracellular Vesicles: A Novel Approach to Interfering with Mesangial Cell Collagen Production in a Hyperglycae…

2016

Extracellular vesicles (EVs) that are derived from stem cells are proving to be promising therapeutic options. We herein investigate the therapeutic potential of EVs that have been derived from different stem cell sources, bone-marrow (MSC) and human liver (HLSC), on mesangial cells (MCs) exposed to hyperglycaemia. By expressing a dominant negative STAT5 construct (ΔNSTAT5) in HG-cultured MCs, we have demonstrated that miR-21 expression is under the control of STAT5, which translates into Transforming Growth Factor beta (TGFβ) expression and collagen production. A number of approaches have been used to show that both MSC- and HLSC-derived EVs protect MCs from HG-induced damage via the trans…

0301 basic medicineMolecular biologyCellGene Expressionlcsh:MedicineBiochemistry0302 clinical medicineAnimal CellsChronic Kidney DiseaseMedicine and Health SciencesSTAT5 Transcription FactorRNA Processing Post-Transcriptionallcsh:ScienceSTAT5Energy-Producing OrganellesCells CulturedMultidisciplinarybiologyMesangial cellStem CellsVector ConstructionCell biologyMitochondriaEnzymesmedicine.anatomical_structureBiochemistryNephrology030220 oncology & carcinogenesisMesangial CellsCollagenStem cellCellular TypesCellular Structures and OrganellesOxidoreductasesLuciferaseResearch ArticleCollagen Type IVBioenergeticsDNA constructionModels Biological03 medical and health sciencesExtracellular VesiclesmicroRNAmedicineGene Expression and Vector TechniquesGeneticsHumansVesiclesCell ProliferationMolecular Biology Assays and Analysis TechniquesCell growthMesenchymal stem celllcsh:RBiology and Life SciencesProteinsMesenchymal Stem CellsTransforming growth factor betaCell BiologyResearch and analysis methodsMicroRNAs030104 developmental biologyMolecular biology techniquesGlucoseHyperglycemiabiology.proteinEnzymologylcsh:QCollagensPLoS ONE
researchProduct

In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models

2016

Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approach…

0301 basic medicineMolecular biologyPhysiologyMutantMyotonic dystrophyDruggabilitylcsh:Medicine01 natural sciencesBiochemistryPhysical ChemistryMyoblastschemistry.chemical_compoundAnabolic AgentsMedicaments--InteraccióAnimal CellsDrug DiscoveryMedicine and Health SciencesMBNL1Drosophila ProteinsMyotonic Dystrophylcsh:ScienceRNA structureConnective Tissue CellsMultidisciplinaryMolecular StructureOrganic CompoundsStem CellsPhysicsRNA-Binding ProteinsBiological activityPhenotypeClimbingMolecular Docking SimulationNucleic acidsChemistryDrosophila melanogasterBiochemistryGenetic DiseasesConnective TissueRNA splicingPhysical SciencesCellular TypesAnatomyLocomotion57 - BiologiaSignal TransductionResearch ArticleBiotechnologyHydrogen bondingcongenital hereditary and neonatal diseases and abnormalitiesIn silicoPrimary Cell CultureComputational biologyBiology010402 general chemistryMyotonic dystrophyMyotonin-Protein KinaseDrug interactionsSmall Molecule Libraries03 medical and health sciencesStructure-Activity RelationshipmedicineAnimalsHumansRNA MessengerEnllaços d'hidrogenClinical GeneticsChemical PhysicsBiology and life sciencesChemical BondingBiological Locomotionlcsh:ROrganic ChemistryEstructura molecularChemical CompoundsHydrogen BondingCell BiologyFibroblastsmedicine.disease0104 chemical sciencesBenzamidinesAlternative SplicingDisease Models AnimalMacromolecular structure analysis030104 developmental biologyPyrimidinesBiological TissuechemistrySmall MoleculesRNAlcsh:QTrinucleotide Repeat ExpansionMolecular structure
researchProduct

Myeloid leukemia with transdifferentiation plasticity developing from T-cell progenitors

2016

Unfavorable patient survival coincides with lineage plasticity observed in human acute leukemias. These cases are assumed to arise from hematopoietic stem cells, which have stable multipotent differentiation potential. However, here we report that plasticity in leukemia can result from instable lineage identity states inherited from differentiating progenitor cells. Using mice with enhanced c-Myc expression, we show, at the single-cell level, that T-lymphoid progenitors retain broad malignant lineage potential with a high capacity to differentiate into myeloid leukemia. These T-cell-derived myeloid blasts retain expression of a defined set of T-cell transcription factors, creating a lymphoi…

0301 basic medicineMyeloidBone Marrow CellsBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceshemic and lymphatic diseasesmedicineCell LineageProgenitor cellMolecular BiologyGeneral Immunology and MicrobiologyGeneral NeuroscienceTransdifferentiationMyeloid leukemiaCell DifferentiationArticlesmedicine.diseaseHematopoietic Stem CellsHaematopoiesisLeukemia030104 developmental biologymedicine.anatomical_structureImmunologyCancer researchLymphoid Progenitor CellsStem cell
researchProduct

Arsenic promotes NF-Κb-mediated fibroblast dysfunction and matrix remodeling to impair muscle stem cell function

2016

Abstract Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration …

0301 basic medicineMyoblastSatellite Cells Skeletal MuscleCellSkeletal muscleBiologyMuscle DevelopmentArticleMyoblasts03 medical and health sciencesMiceStem CellmedicineAnimalsHumansMyocyteRegenerationFibroblastMuscle stem cellMyofibroblastMyogenesisAnimalStem CellsRegeneration (biology)arsenicNF-kappa BTranscription Factor RelASkeletal muscleGene Expression Regulation DevelopmentalCell BiologyFibroblastsCell biology030104 developmental biologymedicine.anatomical_structureMyogenesiImmunologyFibroblastMolecular MedicineStem cellMyofibroblastHumanSignal TransductionDevelopmental Biology
researchProduct

Transformation of Amorphous Polyphosphate Nanoparticles into Coacervate Complexes: An Approach for the Encapsulation of Mesenchymal Stem Cells.

2018

Inorganic polyphosphate [polyP] has proven to be a promising physiological biopolymer for potential use in regenerative medicine because of its morphogenetic activity and function as an extracellular energy-donating system. Amorphous Ca2+ -polyP nanoparticles [Ca-polyP-NPs] are characterized by a high zeta potential with -34 mV (at pH 7.4). This should contribute to the stability of suspensions of the spherical nanoparticles (radius 94 nm), but make them less biocompatible. The zeta potential decreases to near zero after exposure of the Ca-polyP-NPs to protein/peptide-containing serum or medium plus serum. Electron microscopy analysis reveals that the particles rapidly change into a coacerv…

0301 basic medicineNanoparticle02 engineering and technologyengineering.materialRegenerative Medicinelaw.inventionBiomaterials03 medical and health scienceschemistry.chemical_compoundlawPolyphosphatesotorhinolaryngologic diseasesZeta potentialAnimalsHumansGeneral Materials ScienceCoacervatePolyphosphateMesenchymal stem cellMesenchymal Stem CellsGeneral Chemistry021001 nanoscience & nanotechnologydigestive system diseases3. Good healthAmorphous solidInorganic PyrophosphataseMicroscopy Electronsurgical procedures operative030104 developmental biologychemistryengineeringBiophysicsNanoparticlesBiopolymerElectron microscope0210 nano-technologyBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Stem Cells and Other Emerging Agents as Innovative "Drugs" in Neurodegenerative Diseases: Benefits and Limitations.

2018

The brain has a limited process of repair/regeneration linked to the restricted and localized activity of neuronal stem cells. Consequently, it shows a reduced capacity to counteract the age-related loss of neural and glial cells and to repair the consequent injuries/lesions of nervous system. This progressively determines nervous dysfunction and onset/progression of neurodegenerative diseases, which represent a serious social (and economic) problem of our populations. Thus, the research of efficient treatments is encouraged. Stem cell therapy might represent a solution. Today, it, indeed, represents the object of intensive research with the hope of using it, in a near future, as effective …

0301 basic medicineNervous systemAgingPathologymedicine.medical_specialtyself‐repair/regenerative processmedicine.medical_treatmentbrainneurodegenerative pathologiestem cell therapyinnovative intervention measures03 medical and health sciences0302 clinical medicineIntervention (counseling)medicineSettore MED/05 - Patologia ClinicaAnimalsHumansbrain self‐repair/regenerative process innovative intervention measuresbusiness.industryRegeneration (biology)Stem CellsNeurodegenerative DiseasesStem-cell therapyneuronal stem cell030104 developmental biologymedicine.anatomical_structureTreatment Outcomeself-repair/regenerative proceGeriatrics and GerontologyStem cellbusinessNeuroscience030217 neurology & neurosurgeryinnovative intervention measureStem Cell TransplantationRejuvenation research
researchProduct

The Role of SVZ Stem Cells in Glioblastoma

2019

As most common primary brain cancer, glioblastoma is also the most aggressive and malignant form of cancer in the adult central nervous system. Glioblastomas are genetic and transcriptional heterogeneous tumors, which in spite of intensive research are poorly understood. Over the years conventional therapies failed to affect a cure, resulting in low survival rates of affected patients. To improve the clinical outcome, an important approach is to identify the cells of origin. One potential source for these are neural stem cells (NSCs) located in the subventricular zone, which is one of two niches in the adult nervous system where NSCs with the capacity of self-renewal and proliferation resid…

0301 basic medicineNervous systemCancer ResearchSubventricular zoneReviewBiologylcsh:RC254-282brain tumor stem cells03 medical and health sciences0302 clinical medicineCancer stem cellmedicineProgenitor cellneural stem cellstherapyNeurogenesisglioblastomasubventricular zoneCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseNeural stem cellnervous system diseasesneurogenesis030104 developmental biologymedicine.anatomical_structurenervous systemOncology030220 oncology & carcinogenesisCancer researchStem cellCancers
researchProduct