Search results for "Strand"

showing 10 items of 222 documents

Senataxin defective in ataxia oculomotor apraxia type 2 is involved in the defence against oxidative DNA damage

2007

Adefective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA. AOA2 cells exhibited constitutive oxidative DNA damage and enhanced chromosomal instability in response to H2O2. Rejoining of H2O2-induced DNA double-strand breaks (DSBs) was significantly reduced in AOA2 cells compared to controls, and there was no evidence fo…

Ataxiagenetic structuresDNA RepairDNA damageApraxiasBiologyArticlechemistry.chemical_compoundComplementary DNAChromosome instabilitymedicineHumansDNA Breaks Double-StrandedOculomotor apraxiaCells CulturedResearch ArticlesNeurodegenerationMitomycin CDNA HelicasesCell BiologyHydrogen Peroxidemedicine.diseaseMolecular biologyMultifunctional EnzymesOxidative StresschemistryAtaxiamedicine.symptomDNARNA HelicasesDNA Damage
researchProduct

The size of aryl linker between two polyaza-cyclophane moieties controls the binding selectivity to ds-RNA vs ds-DNA

2013

Aryl-linked (pyridine- vs. phenanthroline-) bis-polyaza pyridinophane scorpiands PYPOD and PHENPOD strongly bind to the double stranded DNA and RNA, whereby very intriguing RNA over DNA selectivity is finely tuned by aryl-linker length and aromatic surface. Moreover, PYPOD and PHENPOD dimer formation at high compound/polynucleotide ratios is highly sensitive to the fine interplay between the steric and binding properties of compound-dimers and the DNA minor groove/RNA major groove. That is demonstrated by significantly different induced CD spectra, which allow spectroscopic differentiation between various DNA/RNA secondary structures. A significantly higher (micromolar) antiproliferative ef…

Aza CompoundsBinding SitesMolecular StructureStereochemistryChemistryPyridinesDimerOrganic ChemistryRNADNABiochemistrypolyaza-cyclophane ; DNA ; RNA ; selectivity ; antiproliferative activitychemistry.chemical_compoundPolynucleotidePhysical and Theoretical ChemistryBinding siteParticle SizeLinkerBinding selectivityDNACyclophanePhenanthrolinesRNA Double-Stranded
researchProduct

Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells.

2011

Abstract Artesunate, the active agent from Artemisia annua L. used in the traditional Chinese medicine, is being applied as a first-line drug for malaria treatment, and trials are ongoing that include this drug in cancer therapy. Despite increasing interest in its therapeutic application, the mode of cell killing provoked by artesunate in human cells is unknown. Here, we show that artesunate is a powerful inducer of oxidative DNA damage, giving rise to formamidopyrimidine DNA glycosylase–sensitive sites and the formation of 8-oxoguanine and 1,N6-ethenoadenine. Oxidative DNA damage was induced in LN-229 human glioblastoma cells dose dependently and was paralleled by cell death executed by ap…

Cancer ResearchProgrammed cell deathDNA RepairRAD51Drug Evaluation PreclinicalArtesunateApoptosisCell Cycle ProteinsAtaxia Telangiectasia Mutated ProteinsBiologyProtein Serine-Threonine KinasesModels Biologicalchemistry.chemical_compoundNeoplasmsTumor Cells CulturedHumansDNA Breaks Double-StrandedTumor Suppressor ProteinsMolecular biologyAntineoplastic Agents PhytogenicArtemisininsUp-RegulationNon-homologous end joiningDNA-Binding ProteinsOxidative StressCell killingOncologychemistryArtesunateApoptosisCancer cellHomologous recombinationDNA DamageMolecular cancer therapeutics
researchProduct

Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53

2009

Malignant melanomas are highly resistant to chemotherapy. First-line chemotherapeutics used in melanoma therapy are the methylating agents dacarbazine (DTIC) and temozolomide (TMZ) and the chloroethylating agents BCNU and fotemustine. Here, we determined the mode of cell death in 11 melanoma cell lines upon exposure to TMZ and fotemustine. We show for the first time that TMZ induces apoptosis in melanoma cells, using therapeutic doses. For both TMZ and fotemustine apoptosis is the dominant mode of cell death. The contribution of necrosis to total cell death varied between 10 and 40%. The O(6)-methylguanine-DNA methyltransferase (MGMT) activity in the cell lines was between 0 and 1100 fmol m…

Cancer ResearchProgrammed cell deathDNA repairDacarbazineBlotting WesternApoptosistemozolomideBiologyCollagen Type XIDNA Mismatch RepairNecrosisGliomaAntineoplastic Combined Chemotherapy ProtocolsTumor Cells CulturedmedicineHumansDNA Breaks Double-StrandedEverolimusPhosphorylationDNA Modification MethylasesMelanomaneoplasmsSirolimusTemozolomideTumor Suppressor ProteinsMelanomafotemustinemelanoma therapymedicine.diseaseDacarbazineEnzyme Activationmismatch repairDNA Repair EnzymesOncologyApoptosisCaspasesCancer researchFotemustineTumor Suppressor Protein p53Translational TherapeuticsMGMTmedicine.drugBritish Journal of Cancer
researchProduct

The Fitness Effects of Random Mutations in Single-Stranded DNA and RNA Bacteriophages

2009

Mutational fitness effects can be measured with relatively high accuracy in viruses due to their small genome size, which facilitates full-length sequencing and genetic manipulation. Previous work has shown that animal and plant RNA viruses are very sensitive to mutation. Here, we characterize mutational fitness effects in single-stranded (ss) DNA and ssRNA bacterial viruses. First, we performed a mutation-accumulation experiment in which we subjected three ssDNA (ΦX174, G4, F1) and three ssRNA phages (Qβ, MS2, and SP) to plaque-to-plaque transfers and chemical mutagenesis. Genome sequencing and growth assays indicated that the average fitness effect of the accumulated mutations was similar…

Cancer Researchlcsh:QH426-470virusesDNA Single-StrandedRNA PhagesBiologymedicine.disease_causeGenomeDNA sequencingGenetics and Genomics/Population GeneticsGeneticsmedicinePoint MutationSelection GeneticMolecular BiologyGenome sizeGenetics (clinical)Ecology Evolution Behavior and SystematicsGeneticsMutationMicrobiology/Microbial Evolution and GenomicsModels GeneticPoint mutationRNARNA PhagesGenetics and Genomics/Microbial Evolution and Genomicslcsh:GeneticsEvolutionary Biology/Microbial Evolution and GenomicsMutagenesisMutationMutagenesis Site-DirectedBacterial virusResearch ArticlePLoS Genetics
researchProduct

Ditopic Aza-Scorpiand Ligands Interact Selectively with ds-RNA and Modulate the Interaction upon Formation of Zn2+ Complexes

2021

Nucleic acids are essential biomolecules in living systems and represent one of the main targets of chemists, biophysics, biologists, and nanotechnologists. New small molecules are continuously developed to target the duplex (ds) structure of DNA and, most recently, RNA to be used as therapeutics and/or biological tools. Stimuli-triggered systems can promote and hamper the interaction to biomolecules through external stimuli such as light and metal coordination. In this work, we report on the interaction with ds-DNA and ds-RNA of two aza-macrocycles able to coordinate Zn2+ metal ions and form binuclear complexes. The interaction of the aza-macrocycles and the Zn2+ metal complexes with duple…

Cell SurvivalMetal ions in aqueous solutionÀcids nucleicsPharmaceutical Science010402 general chemistryLigands01 natural sciencesArticleAnalytical ChemistryMetalchemistry.chemical_compoundQD241-441Coordination ComplexesCell Line TumorDrug DiscoveryChlorocebus aethiopsAnimalsHumansPhysical and Theoretical ChemistryVero CellsRNA Double-Strandedchemistry.chemical_classification010405 organic chemistryCytotoxinsBiomoleculeOrganic Chemistryzinc complexRNADNASmall moleculeFluorescenceCombinatorial chemistry0104 chemical sciencesZincchemistryChemistry (miscellaneous)visual_artDNA and RNA duplexesvisual_art.visual_art_mediumNucleic acidMolecular MedicineRNAaza-macrocycleDNAMolecules
researchProduct

Cisplatin sensitivity is related to late DNA damage processing and checkpoint control rather than to the early DNA damage response

2008

The present study aimed at elucidating mechanisms dictating cell death triggered by cisplatin-induced DNA damage. We show that CL-V5B hamster mutant cells, a derivative of V79B, are hypersensitive to cisplatin-induced apoptotic death. CL-V5B cells are characterized by attenuated cisplatin-induced early (2-6 h) stress response, such as phosphorylation of stress-activated protein kinases (SAPK/JNK), ATM and Rad3-related (ATR) protein kinase, histone H2AX and checkpoint kinase-1 (Chk-1). Human FANCC cells also showed a reduced phosphorylation of H2AX and SAPK/JNK at early time point after cisplatin treatment. This was not the case for BRCA2-defective VC-8 hamster cells, indicating that the FA …

Cell cycle checkpointCisplatin-DNA adducts ; DNA repair ; Interstrand cross links ; DNA damage response ; Cell cycle checkpoint ; Cell deathDNA damageDNA repairHealth Toxicology and MutagenesisApoptosisCell LineHistonesDNA AdductsCricetinaeGeneticsmedicineAnimalsHumansCHEK1PhosphorylationMolecular BiologyChromosome AberrationsCisplatinbiologyJNK Mitogen-Activated Protein KinasesDNA replicationG2-M DNA damage checkpointMolecular biologyCell biologyHistonebiology.proteinCisplatinDNA DamageMutagensmedicine.drug
researchProduct

Performance of interdigitated nanoelectrodes for electrochemical DNA biosensor.

2003

An electrochemical methodology for bio-molecule sensing using an array of well-defined nanostructures is presented. We describe the fabrication by e-beam lithography of nanoelectrodes consisting of a 100 micro m x 50 micro m area containing interdigitated electrodes of 100 nm in width and interelectrode distance of 200 nm. Sensitivity and response time of the nanoelectrodes are compared to the responses of macro- and microelectrodes. The specificity of the sensor is studied by modifying the gold electrodes with DNA. The technique enables to characterize both single and double-stranded DNA of 15 nucleotides. A special electrochemical cell is adapted to control the temperature and measure the…

ChemistryDNA Single-StrandedNucleic Acid HybridizationNanotechnologyBiosensing TechniquesElectrochemistryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsElectrochemical cellMicroelectrodeElectrodeElectrochemistryAdsorptionGoldInstrumentationLithographyBiosensorVoltammetryMicroelectrodesElectron-beam lithographyUltramicroscopy
researchProduct

Covalent DNA adducts formed by benzo[c]chrysene in mouse epidermis and by benzo[c]chrysene fjord-region diol epoxides reacted with DNA and polynucleo…

1997

The metabolic activation in mouse skin of benzo[c]chrysene (B[c]C), a weakly carcinogenic polycyclic aromatic hydrocarbon (PAH) present in coal tar and crude oil, was investigated. Male Parkes mice were treated topically with 0.5 mumol of B[c]C, and DNA was isolated from the treated areas of skin at various times after treatment and analyzed by 32P-postlabeling. Seven adduct spots were detected, at a maximum level of 0.89 fmol of adducts/microgram of DNA. Four B[c]C-DNA adducts persisted in skin for at least 3 weeks. Treatment of mice with 0.5 mumol of the optically pure putative proximate carcinogens (+)- and (-)-trans-benzo[c]chrysene-9,10-dihydrodiols [(+)- and (-)-B[c]C-diols] led to th…

ChryseneMaleStereochemistryPolynucleotidesToxicologyAdductchemistry.chemical_compoundDNA AdductsMiceAnimalsCarcinogenBiotransformationChromatography High Pressure LiquidSkinCarcinogenic Polycyclic Aromatic HydrocarbonSingle-Strand Specific DNA and RNA EndonucleasesAbsolute configurationGeneral MedicineDNAPhenanthreneschemistryCovalent bondPolynucleotideAutoradiographyEpoxy CompoundsSpectrophotometry UltravioletChromatography Thin LayerDNAChemical research in toxicology
researchProduct

Variation of haplotype distributions of two genomic regions of Citrus tristeza virus populations from eastern Spain.

2003

Genetic variation in natural populations of Citrus tristeza virus (CTV) was studied using haplotypes detected by single-strand conformation polymorphism (SSCP) analysis of two genomic regions (p20 gene and segment A, located in ORF1a). Analysis of 254 samples from 125 trees, collected at 12 different sites, yielded 8 different haplotypes for p20 and 5 for segment A. The most frequent haplotype of p20 was predominant at all sites, but several sites differed in the predominance of segment A haplotypes. At most sites, the homozygosity observed for the p20 gene tended to be higher than expected in a neutral evolution, whereas the opposite was true for segment A. Comparison of the populations at…

CitrusClosterovirusPopulationGenome ViralBiologyAnalysis of molecular varianceGenetic variationotorhinolaryngologic diseasesGeneticseducationEcology Evolution Behavior and SystematicsPolymorphism Single-Stranded ConformationalPlant DiseasesGeneticseducation.field_of_studyAnalysis of VarianceHaplotypeHomozygoteCitrus tristeza virusGenetic VariationSingle-strand conformation polymorphismbiology.organism_classificationGenetics PopulationHaplotypesSpainRootstockNeutral theory of molecular evolutionMolecular ecology
researchProduct