Search results for "Strong interaction"
showing 10 items of 77 documents
First Observation of an Attractive Interaction between a Proton and a Cascade Baryon
2019
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. This Letter presents the first experimental observation of the attractive strong interaction between a proton and a multistrange baryon (hyperon) Ξ−. The result is extracted from two-particle correlations of combined p−Ξ−⊕¯p−¯Ξ+ pairs measured in p−Pb collisions at √sNN=5.02 TeV at the LHC with ALICE. The measured correlation function is compared with the prediction obtained assuming only an attractive Coulomb interaction and a stand…
A glimpse of gluons through deeply virtual compton scattering on the proton
2017
The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…
Simulations of an inhomogeneous stellar wind interacting with a pulsar wind in a binary system
2014
Binary systems containing a massive star and a non-accreting pulsar present strong interaction between the stellar and the pulsar winds. The properties of this interaction, which largely determine the non-thermal radiation in these systems, strongly depend on the structure of the stellar wind, which can be clumpy or strongly anisotropic, as in Be stars. We study numerically the influence of inhomogeneities in the stellar wind on the structure of the two-wind interaction region. We carried out for the first time axisymmetric, relativistic hydrodynamical simulations, with Lorentz factors of ~6 and accounting for the impact of instabilities, to study the impact in the two-wind interaction stru…
QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives
2014
We dedicate this document to the memory of Mikhail Polikarpov, who passed away in July 2013. Misha worked with us for decades as a convener of the “Confinement” section of the Quark Confinement and Hadron Spectrum Series. He guided and expanded the scientific discussion of that topic, inspiring and under taking new research avenues. From its initial conception, he supported the enterprise of this document and organized Sect. 8, writing the part on confinement himself. He attracted the XIth Conference on Quark Confinement and the Hadron Spectrum to St. Petersburg (September 8-12, 2014; see http://phys.spbu.ru/confxi.html). His warm and kind personality, his high sense of humor, his ideas in …
Nuclear isomers in superheavy elements as stepping stones towards the island of stability
2006
The stability of an atomic nucleus is determined by the outcome of a tug-of-war between the attractive strong nuclear force and the repulsive electrostatic force between the protons in the nucleus. If 100 protons and about 150 neutrons or more are assembled into a nucleus, the repulsion usually becomes dominant and causes the nucleus to fission. For certain 'magic numbers' of protons and neutrons this repulsion can be overcome and the nucleus stabilized. In particular an 'island of stability' is predicted beyond the actinides, where long-lived or even stable superheavy elements can exist, but its precise limits are unknown. Experiments can help determine where this island lies, however. Spe…
High-precision determination of the $K_{e3}$ radiative corrections
2021
We report a high-precision calculation of the Standard Model electroweak radiative corrections in the $K\to \pi e^+\nu(\gamma)$ decay as a part of the combined theory effort to understand the existing anomaly in the determinations of $V_{us}$. Our new analysis features a chiral resummation of the large infrared-singular terms in the radiative corrections and a well-under-control strong interaction uncertainty based on the most recent lattice QCD inputs. While being consistent with the current state-of-the-art results obtained from chiral perturbation theory, we reduce the existing theory uncertainty from $10^{-3}$ to $10^{-4}$. Our result suggests that the Standard Model electroweak effects…
Photon emission in neutral-current interactions at intermediate energies
2013
Neutral current photon emission reactions with nucleons and nuclei are studied. These processes are important backgrounds for nu_mu to nu_e (bar(nu)_mu to bar(nu)_e) appearance oscillation experiments where electromagnetic showers instigated by electrons (positrons) and photons are not distinguishable. At intermediate energies, these reactions are dominated by the weak excitation of the Delta(1232) resonance and its subsequent decay into Ngamma There are also non-resonant contributions that, close to threshold, are fully determined by the effective chiral Lagrangian of strong interactions. In addition, we have also included mechanisms mediated by nucleon excitations (N*) from the second res…
Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning
2019
Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA $\gamma$-array. Spectroscopic factors are compared with new shell-model calculations using a full $pf$ model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constrain…
ββ2νdecay in48Ca
2001
A schematic study of the $\ensuremath{\beta}\ensuremath{\beta}2\ensuremath{\nu}$ decay of ${}^{48}\mathrm{Ca}$ is made in a shell-model approach. The emphasis is especially put on the role of the spin-orbit potential in relation with the contribution of other terms in the strong interaction. This is discussed with a particular attention to the behavior of these ones under the SU(4) symmetry. Different methods in calculating the transition amplitude are also looked at with the aim to determine their reliability and, eventually, why they do not work. Further aspects relative to the failure of the operator expansion method to reproduce the results of more elaborate calculations are examined.
The πd scattering length from Kα X-rays
1974
Abstract X-rays from the K α transition (2P → 1S) of the π − d mesic atom have been observed. Their energy, 2592.8 −2.0 +1.6 , has been measured by the critical absorber technique, using the M V absorption edge in bismuth. The strong interaction shift in the 1S state is −4.8 eV, corresponding to a scattering length a ( π d) = −(0.052 −0.017 +0.022 ) m π −1 , in agreement with recent calculations. The intensity ratio K α /K total = 0.548 ± 0.015.