Search results for "Superalgebra"
showing 10 items of 44 documents
The enveloping algebra of the Lie superalgebra osp(1,2)
1990
International audience
Varieties of algebras with pseudoinvolution: Codimensions, cocharacters and colengths
2022
Abstract Let A be a finitely generated superalgebra with pseudoinvolution ⁎ over an algebraically closed field F of characteristic zero. In this paper we develop a theory of polynomial identities for this kind of algebras . In particular, we shall consider three sequences that can be attached to Id ⁎ ( A ) , the T 2 ⁎ -ideal of identities of A: the sequence of ⁎-codimensions c n ⁎ ( A ) , the sequence of ⁎-cocharacter χ 〈 n 〉 ⁎ ( A ) and the ⁎-colength sequence l n ⁎ ( A ) . Our purpose is threefold. First we shall prove that the ⁎-codimension sequence is eventually non-decreasing, i.e., c n ⁎ ( A ) ≤ c n + 1 ⁎ ( A ) , for n large enough. Secondly, we study superalgebras with pseudoinvoluti…
Asymptotics for Graded Capelli Polynomials
2014
The finite dimensional simple superalgebras play an important role in the theory of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T 2-ideal of graded identities of any such algebra by considering the growth of the corresponding supervariety. We consider the T 2-ideal Γ M+1,L+1 generated by the graded Capelli polynomials C a p M+1[Y,X] and C a p L+1[Z,X] alternanting on M+1 even variables and L+1 odd variables, respectively. We prove that the graded codimensions of a simple finite dimensional superalgebra are asymptotically equal to the graded codimensions of the T 2-ideal Γ M+1,L+1, for some fixed natural numbers M and L. In particular csupn(Γk2+l2+1…
On the exponential growth of graded Capelli polynomials
2013
In a free superalgebra over a field of characteristic zero we consider the graded Capelli polynomials Cap M+1[Y,X] and Cap L+1[Z,X] alternating on M+1 even variables and L+1 odd variables, respectively. Here we compute the superexponent of the variety of superalgebras determinated by Cap M+1[Y,X] and Cap L+1[Z,X]. An essential tool in our computation is the generalized-six-square theorem proved in [3].
A bijection between words and multisets of necklaces
2012
Two of the present authors have given in 1993 a bijection Phi between words on a totally ordered alphabet and multisets of primitive necklaces. At the same time and independently, Burrows and Wheeler gave a data compression algorithm which turns out to be a particular case of the inverse of Phi. In the present article, we show that if one replaces in Phi the standard permutation of a word by the co-standard one (reading the word from right to left), then the inverse bijection is computed using the alternate lexicographic order (which is the order of real numbers given by continued fractions) on necklaces, instead of the lexicographic order as for Phi(-1). The image of the new bijection, ins…
Subvarieties of the Varieties Generated by the SuperalgebraM1, 1(E) orM2(𝒦)
2003
Abstract Let 𝒦 be a field of characteristic zero, and let us consider the matrix algebra M 2(𝒦) endowed with the ℤ2-grading (𝒦e 11 ⊕ 𝒦e 22) ⊕ (𝒦e 12 ⊕ 𝒦e 21). We define two superalgebras, ℛ p and 𝒮 q , where p and q are positive integers. We show that if 𝒰 is a proper subvariety of the variety generated by the superalgebra M 2(𝒦), then the even-proper part of the T 2-ideal of graded polynomial identities of 𝒰 asymptotically coincides with the even-proper part of the graded polynomial identities of the variety generated by the superalgebra ℛ p ⊕ 𝒮 q . This description also affords an even-asymptotic desc…
Polynomial identities on superalgebras: Classifying linear growth
2006
Abstract We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.
Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac
1991
We consider a class of indecomposable modules over the Virasoro Lie algebra that we call bounded admissible modules. We get results concerning the center and the dimensions of the weight spaces. We prove that these modules always contain a submodule with one-dimensional weight spaces. From this follows the proof of a conjecture of V. Kac concerning the classification of simple admissible modules.
Star-polynomial identities: computing the exponential growth of the codimensions
2017
Abstract Can one compute the exponential rate of growth of the ⁎-codimensions of a PI-algebra with involution ⁎ over a field of characteristic zero? It was shown in [2] that any such algebra A has the same ⁎-identities as the Grassmann envelope of a finite dimensional superalgebra with superinvolution B. Here, by exploiting this result we are able to provide an exact estimate of the exponential rate of growth e x p ⁎ ( A ) of any PI-algebra A with involution. It turns out that e x p ⁎ ( A ) is an integer and, in case the base field is algebraically closed, it coincides with the dimension of an admissible subalgebra of maximal dimension of B.
Codimension growth and minimal superalgebras
2003
A celebrated theorem of Kemer (1978) states that any algebra satisfying a polynomial identity over a field of characteristic zero is PI-equivalent to the Grassmann envelope G(A) of a finite dimensional superalgebra A. In this paper, by exploiting the basic properties of the exponent of a PI-algebra proved by Giambruno and Zaicev (1999), we define and classify the minimal superalgebras of a given exponent over a field of characteristic zero. In particular we prove that these algebras can be realized as block-triangular matrix algebras over the base field. The importance of such algebras is readily proved: A is a minimal superalgebra if and only if the ideal of identities of G(A) is a product…