Search results for "Supermanifold"
showing 4 items of 4 documents
Quillen superconnections and connections on supermanifolds
2013
Given a supervector bundle $E = E_0\oplus E_1 \to M$, we exhibit a parametrization of Quillen superconnections on $E$ by graded connections on the Cartan-Koszul supermanifold $(M;\Omega (M))$. The relation between the curvatures of both kind of connections, and their associated Chern classes, is discussed in detail. In particular, we find that Chern classes for graded vector bundles on split supermanifolds can be computed through the associated Quillen superconnections.
The Poincar\'e-Cartan Form in Superfield Theory
2018
An intrinsic description of the Hamilton-Cartan formalism for first-order Berezinian variational problems determined by a submersion of supermanifolds is given. This is achieved by studying the associated higher-order graded variational problem through the Poincar\'e-Cartan form. Noether theorem and examples from superfield theory and supermechanics are also discussed.
The structure of Fedosov supermanifolds
2009
Abstract Given a supermanifold ( M , A ) which carries a supersymplectic form ω , we study the Fedosov structures that can be defined on it, through a set of tensor fields associated to any symplectic connection ∇ . We give explicit recursive expressions for the resulting curvature and study the particular case of a base manifold M with constant holomorphic sectional curvature.
The Minkowski and conformal superspaces
2006
We define complex Minkowski superspace in 4 dimensions as the big cell inside a complex flag supermanifold. The complex conformal supergroup acts naturally on this super flag, allowing us to interpret it as the conformal compactification of complex Minkowski superspace. We then consider real Minkowski superspace as a suitable real form of the complex version. Our methods are group theoretic, based on the real conformal supergroup and its Lie superalgebra.