Search results for "Supermanifold"

showing 4 items of 4 documents

Quillen superconnections and connections on supermanifolds

2013

Given a supervector bundle $E = E_0\oplus E_1 \to M$, we exhibit a parametrization of Quillen superconnections on $E$ by graded connections on the Cartan-Koszul supermanifold $(M;\Omega (M))$. The relation between the curvatures of both kind of connections, and their associated Chern classes, is discussed in detail. In particular, we find that Chern classes for graded vector bundles on split supermanifolds can be computed through the associated Quillen superconnections.

Mathematics - Differential GeometryHigh Energy Physics - TheoryChern classGeneral Physics and AstronomyVector bundleFOS: Physical sciences53C07 58C50 81T13Mathematical Physics (math-ph)Mathematics::Algebraic TopologyAlgebraHigh Energy Physics::TheoryDifferential Geometry (math.DG)High Energy Physics - Theory (hep-th)Mathematics::K-Theory and HomologyBundleSupermanifoldFOS: MathematicsGeometry and TopologyMathematics::Differential GeometryParametrizationMathematics::Symplectic GeometryMathematical PhysicsMathematics
researchProduct

The Poincar\'e-Cartan Form in Superfield Theory

2018

An intrinsic description of the Hamilton-Cartan formalism for first-order Berezinian variational problems determined by a submersion of supermanifolds is given. This is achieved by studying the associated higher-order graded variational problem through the Poincar\'e-Cartan form. Noether theorem and examples from superfield theory and supermechanics are also discussed.

Hamiltonian mechanicsHigh Energy Physics - TheoryMathematics - Differential GeometryPhysics and Astronomy (miscellaneous)BerezinianSuperfieldsymbols.namesakeFormalism (philosophy of mathematics)58E30 46S60 58A20 58J70Poincaré conjectureSupermanifoldsymbolsMathematics::Differential GeometryNoether's theoremMathematical PhysicsMathematical physicsMathematics
researchProduct

The structure of Fedosov supermanifolds

2009

Abstract Given a supermanifold ( M , A ) which carries a supersymplectic form ω , we study the Fedosov structures that can be defined on it, through a set of tensor fields associated to any symplectic connection ∇ . We give explicit recursive expressions for the resulting curvature and study the particular case of a base manifold M with constant holomorphic sectional curvature.

Pure mathematicsMathematical analysisHolomorphic functionGeneral Physics and AstronomyCurvatureManifoldConnection (mathematics)Tensor fieldSupermanifoldMathematics::Differential GeometryGeometry and TopologySectional curvatureMathematics::Symplectic GeometryMathematical PhysicsMathematicsSymplectic geometryJournal of Geometry and Physics
researchProduct

The Minkowski and conformal superspaces

2006

We define complex Minkowski superspace in 4 dimensions as the big cell inside a complex flag supermanifold. The complex conformal supergroup acts naturally on this super flag, allowing us to interpret it as the conformal compactification of complex Minkowski superspace. We then consider real Minkowski superspace as a suitable real form of the complex version. Our methods are group theoretic, based on the real conformal supergroup and its Lie superalgebra.

High Energy Physics - TheoryPure mathematicsFOS: Physical sciencesReal formFísicaStatistical and Nonlinear PhysicsConformal mapLie superalgebraMathematical Physics (math-ph)Mathematics - Rings and AlgebrasSuperspaceHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Rings and Algebras (math.RA)Mathematics::Quantum AlgebraMinkowski spaceSupermanifoldFOS: MathematicsCompactification (mathematics)Mathematics::Representation TheorySupergroupMathematical PhysicsMathematics
researchProduct