Search results for "Supervised Learning"
showing 10 items of 87 documents
Remote Photoplethysmography Based on Implicit Living Skin Tissue Segmentation
2016
International audience; Region of interest selection is an essential part for remote photoplethysmography (rPPG) algorithms. Most of the time, face detection provided by a supervised learning of physical appearance features coupled with skin detection is used for region of interest selection. However, both methods have several limitations and we propose to implicitly select living skin tissue via their particular pulsatility feature. The input video stream is decomposed into several temporal superpixels from which pulse signals are extracted. Pulsatility measure for each temporal superpixel is then used to merge pulse traces and estimate the photoplethysmogram signal. This allows to select …
Unsupervised learning of category-specific symmetric 3D keypoints from point sets
2020
Lecture Notes in Computer Science, 12370
Event-Based Trajectory Prediction Using Spiking Neural Networks
2021
International audience; In recent years, event-based sensors have been combined with spiking neural networks (SNNs) to create a new generation of bio-inspired artificial vision systems. These systems can process spatio-temporal data in real time, and are highly energy efficient. In this study, we used a new hybrid event-based camera in conjunction with a multi-layer spiking neural network trained with a spike-timing-dependent plasticity learning rule. We showed that neurons learn from repeated and correlated spatio-temporal patterns in an unsupervised way and become selective to motion features, such as direction and speed. This motion selectivity can then be used to predict ball trajectory…
Probing neural mechanisms of music perception, cognition, and performance using multivariate decoding.
2012
Recent neuroscience research has shown increasing use of multivariate decoding methods and machine learning. These methods, by uncovering the source and nature of informative variance in large data sets, invert the classical direction of inference that attempts to explain brain activity from mental state variables or stimulus features. However, these techniques are not yet commonly used among music researchers. In this position article, we introduce some key features of machine learning methods and review their use in the field of cognitive and behavioral neuroscience of music. We argue for the great potential of these methods in decoding multiple data types, specifically audio waveforms, e…
An adaptive probabilistic graphical model for representing skills in PbD settings
2010
2020
Abstract. Despite the availability of both commercial and open-source software, an ideal tool for digital rock physics analysis for accurate automatic image analysis at ambient computational performance is difficult to pinpoint. More often, image segmentation is driven manually, where the performance remains limited to two phases. Discrepancies due to artefacts cause inaccuracies in image analysis. To overcome these problems, we have developed CobWeb 1.0, which is automated and explicitly tailored for accurate greyscale (multiphase) image segmentation using unsupervised and supervised machine learning techniques. In this study, we demonstrate image segmentation using unsupervised machine le…
A survey on emotion detection: A lexicon based backtracking approach for detecting emotion from Bengali text
2017
Emotion recognition ability has been introduced as a core component of emotional competence. Every emotion has different ways to be expressed such as text, speech, lyrics etc. This paper reflects the current experimental study and their outcomes on emotion detection from different textual data. In case of lexicon-based analysis, the position of emotional lexicons really varies the state of an emotion. In this empirical study, our focus was to find how people use the emotional keywords to express their emotions. We have presented an emotion detection model to extract emotion from Bengali text at the sentence level. In order to detect emotion from Bengali text, we have considered two basic em…
Smartphone data analysis for human activity recognition
2017
In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide the user with more and more functions, so that anyone is encouraged to carry one during the day, implicitly producing that can be analysed to infer knowledge of the userâs context. In this work we present a novel framework for Human Activity Recognition (HAR) using smartphone data captured by means of embedded triaxial accelerometer and gyroscope sensors. Some statistics over the captured sensor data are computed to model each activity, then real-time classification is performed by means of an efficient supervised learning technique. The system we propose also adopts a …
Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP
2019
This paper presents the results of studies aiming at the assessment and classification of wastewater using an electronic nose. During the experiment, an attempt was made to classify the medium based on an analysis of signals from a gas sensor array, the intensity of which depended on the levels of volatile compounds in the headspace gas mixture above the wastewater table. The research involved samples collected from the mechanical and biological treatment devices of a full-scale wastewater treatment plant (WWTP), as well as wastewater analysis. The measurements were carried out with a metal-oxide-semiconductor (MOS) gas sensor array, when coupled with a computing unit (e.g., a computer with…
AUTOMATIC RETINA EXUDATES SEGMENTATION WITHOUT A MANUALLY LABELLED TRAINING SET
2011
International audience; Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, two new methods for the detection of exudates are presented. The methods do not require a lesion training set so the need to ground-truth data is avoided with significant time savings and independence from human error. We evaluate our algorithm with a new publicly available dataset from various ethnic groups and levels of DME. Also, we compare our results with two recent exudate segmentation algorithms on the same dataset. In all of …