Search results for "Svm"
showing 10 items of 39 documents
An Automatic HEp-2 Specimen Analysis System Based on an Active Contours Model and an SVM Classification
2019
The antinuclear antibody (ANA) test is widely used for screening, diagnosing, and monitoring of autoimmune diseases. The most common methods to determine ANA are indirect immunofluorescence (IIF), performed by human epithelial type 2 (HEp-2) cells, as substrate antigen. The evaluation of ANA consist an analysis of fluorescence intensity and staining patterns. This paper presents a complete and fully automatic system able to characterize IIF images. The fluorescence intensity classification was obtained by performing an image preprocessing phase and implementing a Support Vector Machines (SVM) classifier. The cells identification problem has been addressed by developing a flexible segmentati…
Eco-Friendly Estimation of Heavy Metal Contents in Grapevine Foliage Using In-Field Hyperspectral Data and Multivariate Analysis
2019
Heavy metal monitoring in food-producing ecosystems can play an important role in human health safety. Since they are able to interfere with plants’ physiochemical characteristics, which influence the optical properties of leaves, they can be measured by in-field spectroscopy. In this study, the predictive power of spectroscopic data is examined. Five treatments of heavy metal stress (Cu, Zn, Pb, Cr, and Cd) were applied to grapevine seedlings and hyperspectral data (350−2500 nm), and heavy metal contents were collected based on in-field and laboratory experiments. The partial least squares (PLS) method was used as a feature selection technique, and multiple linear regressions (…
Estudio electrofisiológico del útero humano durante el embarazo a partir de registros no invasivos del electrohisterograma
2017
Título: “Estudio electrofisiológico del útero humano durante el embarazo a partir de registros no invasivos del electrohisterograma” La actividad uterina se monitoriza durante el embarazo y el parto con el objetivo de obtener información sobre las contracciones uterinas, para ayudar a la estimación del inicio y el progreso del trabajo de parto y para evaluar el estado de salud del conjunto materno-fetal. Actualmente, las tocografía externa e interna, son las técnicas más extendidas para la monitorización de la actividad uterina. Éstas técnicas manométricas de uso clínico habitual se limitan a monitorizar las contracciones uterinas a partir de resultante mecánica de la actividad bioeléctrica…
Deep CNN for IIF Images Classification in Autoimmune Diagnostics
2019
The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The class…
An SVM Ensamble Approach to Detect Irony and Stereotype Spreaders on Twitter
2022
The problem we address in this work is classifying whether a Twitter user has spread Irony and Stereotype or not. We used a text vectorization layer to generate Bag-Of-Words sequences. Then such sequences are passed to three different text classifiers (Decision Tree, Convolutional Neural Network, Naive Bayes). Our final classifier is an SVM. To test and validate our approach we used the dataset provided for the author profiling task organized by PAN@CLEF 2022. Our team (missino) submitted the predictions on the provided test set to participate at the shared task. Over several cross fold validation our approach was able to reach a maximum binary accuracy on the best validation split equal to…
Improving active learning methods using spatial information
2011
Active learning process represents an interesting solution to the problem of training sample collection for the classification of remote sensing images. In this work, we propose a criterion based on the spatial information that can be used in combination with a spectral criterion in order to improve the selection of training samples. Experimental results obtained on a very high resolution image show the effectiveness of regularization in spatial domain and open challenging perspectives for terrain campaigns planning. © 2011 IEEE.
Remote sensing image segmentation by active queries
2012
Active learning deals with developing methods that select examples that may express data characteristics in a compact way. For remote sensing image segmentation, the selected samples are the most informative pixels in the image so that classifiers trained with reduced active datasets become faster and more robust. Strategies for intelligent sampling have been proposed with model-based heuristics aiming at the search of the most informative pixels to optimize model's performance. Unlike standard methods that concentrate on model optimization, here we propose a method inspired in the cluster assumption that holds in most of the remote sensing data. Starting from a complete hierarchical descri…
An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms
2008
This paper presents an automatic system for the analysis and classification of atrial fibrillation (AF) patterns from bipolar intracardiac signals. The system is made up of: 1) a feature- extraction module that defines and extracts a set of measures potentially useful for characterizing AF types on the basis of their degree of organization; 2) a feature-selection module (based on the Jeffries-Matusita distance and a branch and bound search algorithm) identifying the best subset of features for discriminating different AF types; and 3) a support vector machine technique-based classification module that automatically discriminates the AF types according to the Wells' criteria. The automatic s…
A multi-process system for HEp-2 cells classification based on SVM
2016
An automatic system for pre-segmented IIF images analysis was developed.A non-standard pipeline for supervised image classification was adopted.The system uses a two-level pyramid to retain some spatial information.From each cell image 216 features are extracted.15 SVM classifiers one-against-one have been implemented. This study addresses the classification problem of the HEp-2 cells using indirect immunofluorescence (IIF) image analysis, which can indicate the presence of autoimmune diseases by finding antibodies in the patient serum. Recently, studies have shown that it is possible to identify the cell patterns using IIF image analysis and machine learning techniques. In this paper we de…
Deep Convolutional Neural Network for HEp-2 fluorescence intensity classification
2019
Indirect ImmunoFluorescence (IIF) assays are recommended as the gold standard method for detection of antinuclear antibodies (ANAs), which are of considerable importance in the diagnosis of autoimmune diseases. Fluorescence intensity analysis is very often complex, and depending on the capabilities of the operator, the association with incorrect classes is statistically easy. In this paper, we present a Convolutional Neural Network (CNN) system to classify positive/negative fluorescence intensity of HEp-2 IIF images, which is important for autoimmune diseases diagnosis. The method uses the best known pre-trained CNNs to extract features and a support vector machine (SVM) classifier for the …