Search results for "Symbo"

showing 10 items of 7541 documents

Systematic and statistical uncertainties of the hilbert-transform based high-precision FID frequency extraction method.

2021

Abstract Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision magnetic field measurements. The absolute value of the magnetic field is determined from the precession frequency of nuclear magnetic moments. The Hilbert transform is one of the methods that have been used to extract the phase function from the observed free induction decay (FID) signal and then its frequency. In this paper, a detailed implementation of a Hilbert-transform based FID frequency extraction method is described, and it is briefly compared with other commonly used frequency extraction methods. How artifacts and noise level in the FID signal affect the extracted phase function are derived analytical…

010302 applied physicsLarmor precessionPhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and Detectors010308 nuclear & particles physicsNoise (signal processing)Covariance matrixMathematical analysisBiophysicsFOS: Physical sciencesAbsolute valueInstrumentation and Detectors (physics.ins-det)Condensed Matter Physics01 natural sciencesBiochemistrySignalFree induction decaysymbols.namesake0103 physical sciencessymbolsHilbert transformUncertainty analysisJournal of magnetic resonance (San Diego, Calif. : 1997)
researchProduct

New low-temperature phosphate glasses as a host for Europium Ions

2021

Abstract Artificial lightining, especially that of light emitting diodes, and telecommunications are penetrating every part of human lives daily. Different compositions phosphate glasses were suggested as a suitable host material for Eu3+ ions. Here rare earth metal ions act as luminescent centers also perturbing the bond order of phosphate glass network comprised of (PO4)3−, [−(O)PO3]2−, [−(O)2PO2]−, [−(O)3PO] structural units, which is indicated by Raman spectroscopy, confirming successful integration of aforementioned ions into the glass material. Glasses doped with Eu3+ ions show their typical photoluminescence spectra in low symmetry environment, consisting of the highest intensity 5D0…

010302 applied physicsMaterials scienceBorosilicate glassMetal ions in aqueous solutionInorganic chemistryDopingchemistry.chemical_elementGermanium02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsPhosphate glasssymbols.namesakechemistry0103 physical sciencesMaterials ChemistryCeramics and Compositessymbols0210 nano-technologyEuropiumLuminescenceRaman spectroscopyJournal of Non-Crystalline Solids
researchProduct

High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO

2011

International audience; We present a high-pressure study of ZnO carried out in the mid- to far-infrared frequency domain with the aim of characterizing the optic modes of wurtzite and rocksalt ZnO. We obtained the pressure coefficients of the E1(TO), E1(LO), A1(TO), and A1(LO) modes of the low-pressure wurtzite phase and compare them with previous Raman measurements. The optical modes of the high-pressure rocksalt phase are infrared active, so we were able to determine their wave numbers and pressure dependencies. In the wurtzite phase, high pressure induces a slight decrease in both longitudinal and transverse effective charges. The decrease is more pronounced in the rocksalt phase.

010302 applied physicsMaterials scienceCondensed matter physicsInfraredbusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsTransverse planesymbols.namesakeSemiconductorOpticsFrequency domainPhase (matter)[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencessymbolsPACS : 78.30.Fs 64.70.kgWavenumber0210 nano-technologyRaman spectroscopybusinessWurtzite crystal structure
researchProduct

Acoustic vibrations of monoclinic zirconia nanocrystals

2011

International audience; Polarized low-frequency Raman spectra originating from confined acoustic vibrations are reported for monoclinic ZrO2 nanoparticles with a narrow size distribution synthesized from a continuous supercritical water process. The monoclinic lattice structure is taken into account for the interpretation of the spectra by comparing with isotropic and anisotropic continuum elasticity calculations for monodomain nanocrystals. The various mechanisms leading to the broadening of the Raman peaks are discussed. We demonstrate that an accurate determination of the size distribution of the nanoparticles is possible using the Raman peak due to the fundamental breathing vibration wh…

010302 applied physicsMaterials scienceCondensed matter physicsIsotropy[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographysymbols.namesakeGeneral Energy0103 physical sciencessymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Cubic zirconiaPhysical and Theoretical ChemistryElasticity (economics)0210 nano-technologyAnisotropyRaman spectroscopyMonoclinic crystal system
researchProduct

The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films

2021

Abstract Non-hydrogenated diamond-like carbon (DLC) films doped with metals and oxygen were deposited by direct current magnetron sputtering. The influence of chromium and nickel on the surface morphology, elemental composition, bonding structure, adhesion force, optical transmittance and nanohardness of the films was characterized by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), multi-wavelength Raman spectroscopy, UV–VIS–NIR spectrophotometry and nanoindenter. The surface roughness was reduced with the addition of Cr (7.4 at. %) or Ni (8.9 at. %) into DLC films. The EDX measurements indicated that the addition of Cr increased the oxygen content by ~37%, while …

010302 applied physicsMaterials scienceDiamond-like carbonDopingAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesSurfaces Coatings and FilmsChromiumNickelsymbols.namesakechemistry0103 physical sciencessymbolsSurface roughness0210 nano-technologyRaman spectroscopyInstrumentationCarbonVacuum
researchProduct

Melting temperature prediction by thermoelastic instability: An ab initio modelling, for periclase (MgO)

2021

Abstract Melting temperature (TM) is a crucial physical property of solids and plays an important role for the characterization of materials, allowing us to understand their behavior at non-ambient conditions. The present investigation aims i) to provide a physically sound basis to the estimation of TM through a “critical temperature” (TC), which signals the onset of thermodynamic instability due to a change of the isothermal bulk modulus from positive to negative at a given PC-VC-TC point, such that (∂P/∂V)VC,TC = -(∂2F/∂V2) VC,TC = 0; ii) to discuss the case of periclase (MgO), for which accurate melting temperature observations as a function of pressure are available. Using first princip…

010302 applied physicsMaterials scienceGeneral Chemical EngineeringAnharmonicity0211 other engineering and technologiesAb initioThermodynamics02 engineering and technologyGeneral ChemistryFunction (mathematics)engineering.material01 natural sciencesInstabilityComputer Science ApplicationsPhysical propertysymbols.namesakeThermoelastic dampingHelmholtz free energy0103 physical sciencessymbolsengineeringPericlase021102 mining & metallurgy
researchProduct

Electrical and thermomechanical properties of CVI- Si3N4 porous rice husk ash infiltrated by Al-Mg-Si alloys

2017

Abstract The effect of following processing parameters on the electrical and thermomechanical properties of Al/Si3N4 deposited silica composites was investigated using the Taguchi method and analysis of variance (ANOVA): infiltration temperature and time, atmosphere, effect of Si3N4 coating, porosity content in the preforms, and magnesium content in the alloy. The contributions of each of the parameters to modulus of elasticity, electrical resistivity, coefficient of thermal expansion (CTE), and thermal diffusivity of the resulting composites were determined. The maximum modulus of elasticity and electrical resistivity of obtained composites were 265 GPa, and 1.37 × 10−3 Ω m, respectively. …

010302 applied physicsMaterials scienceMechanical EngineeringAlloyMetals and AlloysYoung's modulus02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyThermal diffusivity01 natural sciencesThermal expansionsymbols.namesakeTaguchi methodsCoatingMechanics of MaterialsElectrical resistivity and conductivity0103 physical sciencesMaterials ChemistryengineeringsymbolsComposite material0210 nano-technologyPorosityJournal of Alloys and Compounds
researchProduct

Static and dynamic structure of $ZnWO_4$ nanoparticles

2011

Abstract Static and dynamic structure of ZnWO 4 nanoparticles, synthesized by co-precipitation technique, has been studied by temperature dependent x-ray absorption spectroscopy at the Zn K-edge and W L 3 -edge. Complementary experimental techniques, such as x-ray powder diffraction, Raman and photoluminescence spectroscopies, have been used to understand the variation of vibrational, optical, and structural properties of nanoparticles, compared to microcrystalline ZnWO 4 . Our results indicate that the structure of nanoparticles experiences strong relaxation leading to the significant distortions of the WO 6 and ZnO 6 octahedra, being responsible for the changes in optical and vibrational …

010302 applied physicsMaterials sciencePhotoluminescenceAbsorption spectroscopyExtended X-ray absorption fine structureAnalytical chemistryNanoparticle02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeMicrocrystalline0103 physical sciencesX-ray crystallographyMaterials ChemistryCeramics and Compositessymbolsddc:6600210 nano-technologyRaman spectroscopyPowder diffraction
researchProduct

Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies

2020

The first-principles (ab initio) computations of the structural, electronic, and phonon properties have been performed for cubic and low-temperature tetragonal phases of BaTiO3 and SrTiO3 perovskite crystals, both stoichiometric and non-stoichiometric (with neutral oxygen vacancies). Calculations were performed with the CRYSTAL17 computer code within the linear combination of atomic orbitals approximation, using the B1WC advanced hybrid exchange-correlation functional of the density-functional-theory (DFT) and the periodic supercell approach. Various possible spin states of the defective systems were considered by means of unrestricted (open shell) DFT calculations. It was demonstrated that…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Spin statesAb initioGeneral Physics and Astronomy01 natural sciencesMolecular physicsCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsLinear combination of atomic orbitalsVacancy defect0103 physical sciencesPhysics::Atomic and Molecular Clusterssymbols010306 general physicsRaman spectroscopyOpen shellPerovskite (structure)Low Temperature Physics
researchProduct

Experimental studies on uniaxial and echibiaxial tensile tests applied to plastic materials sheets

2019

Abstract The main objective of this paper is to determine the behavior of few plastic materials using two different type of tests. We use classical uniaxial tensile test to determine the most important mechanical and elastic characteristics, such as: yield stress, Young modulus, tangent modulus, maximum stress and maximum strain and to plot engineering stress vs. engineering strain curve for these materials. The second test, that was used in this study, was echibiaxial tensile test on the spherical punch. This test was used to determine maximum breaking force and, of course maximum displacement of specimen on punch direction and others few important characteristics, such as: major and minor…

010302 applied physicsMaterials sciencePolyoxymethyleneDeformation (mechanics)Young's modulus02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesStress (mechanics)chemistry.chemical_compoundsymbols.namesakechemistry0103 physical sciencesTangent modulusUltimate tensile strengthsymbolsvon Mises yield criterionComposite material0210 nano-technologyTensile testing
researchProduct