Search results for "Symmetry"

showing 10 items of 3576 documents

Muon physics — Survey

1992

The empirical basis of the minimal standard model has been consolidated in an impressive way, over the last seventeen years, by precision experiments at the meson factories. I illustrate this by means of selected examples of muonic weak interaction processes. I then describe an extension of Yang-Mills theory, inspired by noncommutative geometry, that yields precisely the standard model but fixes and explains some of its empirical input. In particular, this new approach yields a simple geometrical interpretation of spontaneous symmetry breaking. The algebraic framework of this approach offers a natural place for the lepton and quark matter fields and for inter-family mixing.

PhysicsHiggs fieldParticle physicsMuonMesonSpontaneous symmetry breakingSymmetry breakingQuantum field theoryNoncommutative geometryStandard Model
researchProduct

Measurement of the D→K−π+ strong phase difference in ψ(3770)→D0D¯0

2014

Abstract We study D 0 D ¯ 0 pairs produced in e + e − collisions at s = 3.773 GeV using a data sample of 2.92 fb−1 collected with the BESIII detector. We measured the asymmetry A K π CP of the branching fractions of D → K − π + in CP-odd and CP-even eigenstates to be ( 12.7 ± 1.3 ± 0.7 ) × 10 − 2 . A K π CP can be used to extract the strong phase difference δ K π between the doubly Cabibbo-suppressed process D ¯ 0 → K − π + and the Cabibbo-favored process D 0 → K − π + . Using world-average values of external parameters, we obtain cos δ K π = 1.02 ± 0.11 ± 0.06 ± 0.01 . Here, the first and second uncertainties are statistical and systematic, respectively, while the third uncertainty arises …

Phase differencePhysicsNuclear and High Energy Physicsmedia_common.quotation_subjectElectron–positron annihilationQuantum mechanicsAnalytical chemistryPiCP violation7. Clean energyAsymmetrymedia_commonPhysics Letters B
researchProduct

Lateral magnification matrix from the dioptric power matrix formalism in the paraxial case.

2012

Background Previous studies have highlighted that power matrices fully characterize the concept of dioptric power of any astigmatic surface. Thus, the basic equations in physiological optics can be generalized using the matrix formalism of the dioptric power. Among others, lateral magnification has also been interpreted as a matrix but mainly concerning magnification modification induced by spectacle correction of refractive error. Purpose To provide a fresh look into a novel paraxial formulation for the assessment of the lateral magnification using power matrices and in presence of astigmatism for thin and thick imaging systems in general. Methods Linear optics provides the frame to genera…

Optics and Photonicsbusiness.industrymedia_common.quotation_subjectParaxial approximationPhysics::OpticsMagnificationAstigmatismAsymmetrySensory SystemsOphthalmologyMatrix (mathematics)Formalism (philosophy of mathematics)OpticsThin lensHumansbusinessRefractive indexPower matrixOptometrymedia_commonMathematicsLensesOphthalmicphysiological optics : the journal of the British College of Ophthalmic Opticians (Optometrists)
researchProduct

Pressure Shift and Gravitational Red Shift of Balmer Lines in White Dwarfs. Rediscussion

2015

The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of $H_\alpha$ and $H_\beta$ Balmer lines in spectra of DA white dwarfs (WDs), as masking effects in measurements of the gravitational red shift in WDs, have been examined in detail. The results are compared with our earlier ones from before a quarter of a century (Grabowski et al. 1987, hereafter ApJ'87; Madej and Grabowski 1990). In these earlier papers, as a dominant constituent of the Balmer-line-profiles, the standard, symmetrical Stark line profiles, shifted as the whole by PS-effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark-line-profiles (e…

Physicsatomic processes; line: formation; line: profiles; plasmas; white dwarfsmedia_common.quotation_subjectFOS: Physical sciencesBalmer seriesWhite dwarfAstronomy and AstrophysicsAstrophysicsPlasmaAsymmetrySpectral linesymbols.namesakeStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencesymbolsSolar and Stellar Astrophysics (astro-ph.SR)Line (formation)media_commonGravitational redshift
researchProduct

Mixing asymmetries inBmeson systems, the D0 like-sign dimuon asymmetry, and generic new physics

2015

The measurement of a large like-sign dimuon asymmetry $A^b_{SL}$ by the D0 experiment at the Tevatron departs noticeably from Standard Model expectations and it may be interpreted as a hint of physics beyond the Standard Model contributing to $\Delta B\neq 0$ transitions. In this work we analyse how the natural suppression of $A^b_{SL}$ in the SM can be circumvented by New Physics. We consider generic Standard Model extensions where the charged current mixing matrix is enlarged with respect to the usual $3\times 3$ unitary Cabibbo-Kobayashi-Maskawa matrix, and show how, within this framework, a significant enhancement over Standard Model expectations for $A^b_{SL}$ is easily reachable throu…

PhysicsNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard Modelmedia_common.quotation_subjectTevatronFísicaFOS: Physical sciencesAsymmetryHigh Energy Physics - Experiment3. Good healthStandard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)CP violationB mesonCharged currentMixing (physics)media_commonPhysical Review D
researchProduct

Low-energy interactions of Nambu-Goldstone bosons with D mesons in covariant chiral perturbation theory

2010

We calculate the scattering lengths of Nambu-Goldstone bosons interacting with D mesons in a covariant formulation of chiral perturbation theory, which satisfies heavy-quark spin symmetry and analytical properties of loop amplitudes. We compare our results with previous studies performed using heavy-meson chiral perturbation theory and show that recoil corrections are sizable in most cases.

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesElementary particleRenormalizationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Goldstone bosonHigh Energy Physics::ExperimentPerturbation theoryChiral symmetry breakingNuclear ExperimentBoson
researchProduct

Resonances, chiral symmetry, coupled channel unitarity and effective Lagrangians

1999

By means of a coupled channel non-perturbative unitary approach, it is possible to extend the strong constrains of Chiral Perturbation Theory to higher energies. In particular, it is possible to reproduce the lowest lying resonances in meson-meson scattering up to 1.2 GeV using the parameters of the O(p^2) and O(p^4) Chiral Lagrangian. We report on an update of these results examining their possible relevance for meson spectroscopy.

PhysicsNuclear and High Energy PhysicsChiral symmetryParticle physicsChiral perturbation theoryFísica-Modelos matemáticosNuclear TheoryUnitarityMesonScatteringHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaUnitary stateNuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Física matemáticaHigh Energy Physics::ExperimentSpectroscopyNuclear ExperimentCommunication channel
researchProduct

Spontaneous proton decay and the origin of Peccei-Quinn symmetry

2019

We propose a new interpretation of Peccei-Quinn symmetry within the Standard Model, identifying it with the axial $B + L$ symmetry i.e. $U(1)_{PQ} \equiv U(1)_{\gamma_5(B+L)}$. This new interpretation retains all the attractive features of Peccei-Quinn solution to strong CP problem but in addition also leads to several other new and interesting consequences. Owing to the identification $U(1)_{PQ} \equiv U(1)_{\gamma_5(B+L)}$ the axion also behaves like Majoron inducing small seesaw masses for neutrinos after spontaneous symmetry breaking. Another novel feature of this identification is the phenomenon of spontaneous (and also chiral) proton decay with its decay rate associated with the axion…

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsProton decaySpontaneous symmetry breakingPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyFOS: Physical sciences01 natural scienceslcsh:QC1-999Symmetry (physics)Standard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesStrong CP problem010306 general physicsAxionlcsh:PhysicsMajoron
researchProduct

Geometric inequivalence of metric and Palatini formulations of General Relativity

2020

Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K≡R R , can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the …

General RelativityNuclear and High Energy PhysicsRiemann curvature tensorFísica-Modelos matemáticosGeneral relativityScalar (mathematics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmology//purl.org/becyt/ford/1 [https]symbols.namesakeGeneral Relativity and Quantum Cosmology0103 physical sciencesSchwarzschild metricFísica matemáticaGauge theoryTensorGeometric inequivalence010306 general physicsMathematical PhysicsMathematical physicsPhysics010308 nuclear & particles physicsKretschmann scalar//purl.org/becyt/ford/1.3 [https]Mathematical Physics (math-ph)lcsh:QC1-999Symmetry (physics)symbolslcsh:PhysicsPhysics Letters
researchProduct

Independence between developmental stability and canalization in the skull of the house mouse.

2000

The relationship between the two components of developmental homeostasis, that is canalization and developmental stability (DS), is currently debated. To appraise this relationship, the levels and morphological patterns of interindividual variation and fluctuating asymmetry were assessed using a geometric morphometric approach applied to the skulls of laboratory samples of the house mouse. These three samples correspond to two random-bred strains of the two European subspecies of the house mouse and their F1 hybrids. The inter- and intraindividual variation levels were found to be smaller in the hybrid group compared to the parental ones, suggesting a common heterotic effect on skull canali…

MorphogenesisZoologyBiologySubspeciesGeneral Biochemistry Genetics and Molecular BiologyFluctuating asymmetryHouse mouseLoss of heterozygosityMiceGenetic variationmedicineMorphogenesisAnimalsHomeostasisGeneral Environmental ScienceHybridGeneral Immunology and MicrobiologySkullGenetic VariationGeneral Medicinebiology.organism_classificationSkullmedicine.anatomical_structureEvolutionary biologyBody ConstitutionGeneral Agricultural and Biological SciencesMonte Carlo MethodResearch ArticleProceedings. Biological sciences
researchProduct