6533b7cefe1ef96bd1256f8f
RESEARCH PRODUCT
Measurement of the D→K−π+ strong phase difference in ψ(3770)→D0D¯0
M. AblikimM.n. AchasovX.c. AiO. AlbayrakM. AlbrechtD.j. AmbroseF.f. AnQ. AnJ.z. BaiR. Baldini FerroliY. BanD.w. BennettJ.v. BennettM. BertaniJ.m. BianE. BogerO. BondarenkoI. BoykoS. BraunRoy A. BriereH. CaiX. CaiO. CakirA. CalcaterraG.f. CaoS.a. CetinJ.f. ChangG. ChelkovG. ChenH.s. ChenJ.c. ChenM.l. ChenS.j. ChenX. ChenX.r. ChenY.b. ChenH.p. ChengX.k. ChuY.p. ChuD. Cronin-hennessyH.l. DaiJ.p. DaiD. DedovichZ.y. DengA. DenigI. DenysenkoM. DestefanisW.m. DingY. DingC. DongJ. DongL.y. DongM.y. DongS.x. DuJ.z. FanJ. FangS.s. FangY. FangL. FavaC.q. FengC.d. FuO. FuksQ. GaoY. GaoC. GengK. GoetzenW.x. GongW. GradlM. GrecoM.h. GuY.t. GuY.h. GuanL.b. GuoT. GuoY.p. GuoZ. HaddadiY.l. HanF.a. HarrisK.l. HeM. HeZ.y. HeT. HeldY.k. HengZ.l. HouC. HuH.m. HuJ.f. HuT. HuG.m. HuangG.s. HuangH.p. HuangJ.s. HuangL. HuangX.t. HuangY. HuangT. HussainC.s. JiQ. JiQ.p. JiX.b. JiX.l. JiL.l. JiangL.w. JiangX.s. JiangJ.b. JiaoZ. JiaoD.p. JinS. JinT. JohanssonA. JulinN. Kalantar-nayestanakiX.l. KangX.s. KangM. KavatsyukB. KlossB. KopfM. KornicerW. KuehnA. KupscW. LaiJ.s. LangeM. LaraP. LarinM. LeyheC.h. LiCheng LiCui LiD. LiD.m. LiF. LiG. LiH.b. LiJ.c. LiJin LiK. LiK. LiLei LiP.r. LiQ.j. LiT. LiW.d. LiW.g. LiX.l. LiX.n. LiX.q. LiZ.b. LiH. LiangY.f. LiangY.t. LiangD.x. LinB.j. LiuC.l. LiuC.x. LiuF.h. LiuFang LiuFeng LiuH.b. LiuH.h. LiuH.m. LiuJ. LiuJ.p. LiuK. LiuK.y. LiuP.l. LiuQ. LiuS.b. LiuX. LiuY.b. LiuZ.a. LiuZhiqiang LiuZhiqing LiuH. LoehnerX.c. LouG.r. LuH.j. LuH.l. LuJ.g. LuY. LuY.p. LuC.l. LuoM.x. LuoT. LuoX.l. LuoM. LvX.r. LyuF.c. MaH.l. MaQ.m. MaS. MaT. MaX.y. MaF.e. MaasM. MaggioraQ.a. MalikY.j. MaoZ.p. MaoJ.g. MesschendorpJ. MinT.j. MinR.e. MitchellX.h. MoY.j. MoH. MoeiniC. Morales MoralesK. MoriyaN.yu. MuchnoiH. MuramatsuY. NefedovF. NerlingI.b. NikolaevZ. NingS. NisarX.y. NiuS.l. OlsenQ. OuyangS. PacettiM. PelizaeusH.p. PengK. PetersJ.l. PingR.g. PingR. PolingM. QiS. QianC.f. QiaoL.q. QinN. QinX.s. QinY. QinZ.h. QinJ.f. QiuK.h. RashidC.f. RedmerM. RipkaG. RongX.d. RuanA. SarantsevK. SchoenningS. SchumannW. ShanM. ShaoC.p. ShenX.y. ShenH.y. ShengM.r. ShepherdW.m. SongX.y. SongS. SpataroB. SpruckG.x. SunJ.f. SunS.s. SunY.j. SunY.z. SunZ.j. SunZ.t. SunC.j. TangX. TangI. TapanE.h. ThorndikeM. TiemensD. TothM. UllrichI. UmanG.s. VarnerB. WangD. WangD.y. WangK. WangL.l. WangL.s. WangM. WangP. WangP.l. WangQ.j. WangS.g. WangW. WangX.f. WangY.d. WangY.f. WangY.q. WangZ. WangZ.g. WangZ.h. WangZ.y. WangD.h. WeiJ.b. WeiP. WeidenkaffS.p. WenM. WernerU. WiednerM. WolkeL.h. WuN. WuZ. WuL.g. XiaY. XiaD. XiaoZ.j. XiaoY.g. XieQ.l. XiuG.f. XuL. XuQ.j. XuQ.n. XuX.p. XuZ. XueL. YanW.b. YanW.c. YanY.h. YanH.x. YangL. YangY. YangY.x. YangH. YeM. YeM.h. YeB.x. YuC.x. YuH.w. YuJ.s. YuS.p. YuC.z. YuanW.l. YuanY. YuanA. YuncuA.a. ZafarA. ZalloS.l. ZangY. ZengB.x. ZhangB.y. ZhangC. ZhangC.b. ZhangC.c. ZhangD.h. ZhangH.h. ZhangH.y. ZhangJ.j. ZhangJ.q. ZhangJ.w. ZhangJ.y. ZhangJ.z. ZhangS.h. ZhangX.j. ZhangX.y. ZhangY. ZhangY.h. ZhangZ.h. ZhangZ.p. ZhangZ.y. ZhangG. ZhaoJ.w. ZhaoLei ZhaoLing ZhaoM.g. ZhaoQ. ZhaoQ.w. ZhaoS.j. ZhaoT.c. ZhaoX.h. ZhaoY.b. ZhaoZ.g. ZhaoA. ZhemchugovB. ZhengJ.p. ZhengY.h. ZhengB. ZhongL. ZhouLi ZhouX. ZhouX.k. ZhouX.r. ZhouX.y. ZhouK. ZhuK.j. ZhuX.l. ZhuY.c. ZhuY.s. ZhuZ.a. ZhuJ. ZhuangB.s. ZouJ.h. Zousubject
Phase differencePhysicsNuclear and High Energy Physicsmedia_common.quotation_subjectElectron–positron annihilationQuantum mechanicsAnalytical chemistryPiCP violation7. Clean energyAsymmetrymedia_commondescription
Abstract We study D 0 D ¯ 0 pairs produced in e + e − collisions at s = 3.773 GeV using a data sample of 2.92 fb−1 collected with the BESIII detector. We measured the asymmetry A K π CP of the branching fractions of D → K − π + in CP-odd and CP-even eigenstates to be ( 12.7 ± 1.3 ± 0.7 ) × 10 − 2 . A K π CP can be used to extract the strong phase difference δ K π between the doubly Cabibbo-suppressed process D ¯ 0 → K − π + and the Cabibbo-favored process D 0 → K − π + . Using world-average values of external parameters, we obtain cos δ K π = 1.02 ± 0.11 ± 0.06 ± 0.01 . Here, the first and second uncertainties are statistical and systematic, respectively, while the third uncertainty arises from the external parameters. This is the most precise measurement of δ K π to date.
year | journal | country | edition | language |
---|---|---|---|---|
2014-06-01 | Physics Letters B |