Search results for "Synthetic"

showing 10 items of 723 documents

Light-harvesting chlorophyll a/b-binding protein stably inserts into etioplast membranes supplemented with Zn-pheophytin a/b.

1997

Light-harvesting chlorophyll a/b-binding protein, LHCP, or its precursor, pLHCP, cannot be stably inserted into barley etioplast membranes in vitro. However, when these etioplast membranes are supplemented with the chlorophyll analogs Zn-pheophytin a/b, synthesized in situ from Zn-pheophorbide a/b and digeranyl pyrophosphate, pLHCP is inserted into a protease-resistant state. This proves that chlorophyll is the only component lacking in etioplast membranes that is necessary for stable LHCP insertion. Synthesis of Zn-pheophytin b alone promotes insertion of LHCP in vitro into a protease-resistant state, whereas synthesis of Zn-pheophytin a alone does not. Insertion of pLHCP into etioplast me…

Chlorophyll bChlorophyllChlorophyll aChlorophyll APhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesPheophytinsCell BiologyBiologyPlantsBiochemistrychemistry.chemical_compoundB vitaminsZincMembraneGreeningBiochemistrychemistryEtioplastChlorophyllThylakoidMolecular BiologyThe Journal of biological chemistry
researchProduct

Determination of relative chlorophyll binding affinities in the major light-harvesting chlorophyll a/b complex.

2002

The major light-harvesting complex (LHCIIb) of photosystem II can be reconstituted in vitro from its recombinant apoprotein in the presence of a mixture of carotenoids and chlorophylls a and b. By varying the chlorophyll a/b ratio in the reconstitution mixture, the relative amounts of chlorophyll a and chlorophyll b bound to LHCIIb can be changed. We have analyzed the chlorophyll stoichiometry in recombinant wild type and mutant LHCIIb reconstituted at different chlorophyll a/b ratios in order to assess relative affinities of the chlorophyll-binding sites. This approach reveals five sites that exclusively bind chlorophyll b. Another site exhibits a slight preference of chlorophyll b over ch…

Chlorophyll bChlorophyllChlorophyll aPhotosystem IIPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiologyBiochemistrychemistry.chemical_compoundChlorophyll bindingBinding siteMolecular BiologyCarotenoidchemistry.chemical_classificationBinding SitesPeasPhotosystem II Protein ComplexCell BiologyRecombinant ProteinsB vitaminsKineticsBiochemistrychemistryAmino Acid SubstitutionChlorophyllMutagenesis Site-DirectedThe Journal of biological chemistry
researchProduct

Chlorophyll b is involved in long-wavelength spectral properties of light-harvesting complexes LHC I and LHC II.

2001

AbstractChlorophyll (Chl) molecules attached to plant light-harvesting complexes (LHC) differ in their spectral behavior. While most Chl a and Chl b molecules give rise to absorption bands between 645 nm and 670 nm, some special Chls absorb at wavelengths longer than 700 nm. Among the Chl a/b-antennae of higher plants these are found exclusively in LHC I. In order to assign this special spectral property to one chlorophyll species we reconstituted LHC of both photosystem I (Lhca4) and photosystem II (Lhcb1) with carotenoids and only Chl a or Chl b and analyzed the effect on pigment binding, absorption and fluorescence properties. In both LHCs the Chl-binding sites of the omitted Chl species…

Chlorophyll bChlorophyllPhotosystem IIPigment bindingPhotosynthetic Reaction Center Complex ProteinsBiophysicsLight-Harvesting Protein ComplexesPhotosystem IPhotochemistryBiochemistryAbsorptionLight-harvesting complexReconstitutionchemistry.chemical_compoundSolanum lycopersicumStructural BiologySpinacia oleraceaGeneticsChlorophyll bindingCentrifugation Density GradientMolecular BiologyChlorophyll fluorescenceLong-wavelength chlorophyllBinding SitesPhotosystem I Protein ComplexChemistryChlorophyll ATemperaturePhotosystem II Protein ComplexLight-harvesting complexes of green plantsCell BiologyPigments BiologicalPlant LeavesSpectrometry FluorescenceLight-harvesting complexChlorophyll fluorescenceChlorophyll bindingProtein BindingFEBS letters
researchProduct

Random mutations directed to transmembrane and loop domains of the light-harvesting chlorophyll a/b protein: impact on pigment binding.

1999

The major light-harvesting complex of photosystem II (LHCII) can be reconstituted in vitro by folding its bacterially expressed apoprotein, Lhcb, in detergent solution in the presence of chlorophylls and carotenoids. To compare the impact of alpha-helical transmembrane domains and hydrophilic loop domains of the apoprotein on complex formation and stability, we introduced random mutations into a segment of the protein comprising the stromal loop, the third (C-proximal) transmembrane helix, and part of the amphipathic helix in the C-terminal domain. The mutant versions of Lhcb were screened for the loss of their ability to form stable LHCII upon reconstitution in vitro. Most steps during the…

Chlorophyll bChlorophyllProtein FoldingPigment bindingMolecular Sequence DataPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiologyBiochemistryProtein Structure Secondarychemistry.chemical_compoundProtein structureChlorophyll bindingAmino Acid SequencePeptide sequencePeasMembrane ProteinsPhotosystem II Protein ComplexCarotenoidsTransmembrane proteinProtein Structure TertiaryTransmembrane domainSpectrometry FluorescencechemistryBiochemistryEnergy TransferMutationMutagenesis Site-DirectedProtein foldingProtein BindingBiochemistry
researchProduct

Chlorophyll-Protein Complexes of Chlorella fusca

1980

Chlorophyll-protein complexes from thylakoids of the normal type and two mutants of Chlorella fusca were separated using sodium dodecyl sulfate acrylamide gel electrophoresis (PAGE). The properties of the chlorophyll-protein complexes of the three strains of Chlorella were compared. Standard curves were set up for the characterization of the chlorophyll-proteins. In every electrophoretic separation of chlorophyll-protein complexes, a certain amount of pigment is separated from the protein. We tried to keep that amount as low as possible by mild solubiliza­tion and by working in low temperature. Under these conditions, we obtained several new chlorophyll-proteins in addition to the P-700-chl…

Chlorophyll bPhotosynthetic reaction centreChlorophyll abiologyPhotosystem Ibiology.organism_classificationGeneral Biochemistry Genetics and Molecular Biologychemistry.chemical_compoundChlorellachemistryChlorophyllSodium dodecyl sulfatePolyacrylamide gel electrophoresisNuclear chemistryZeitschrift für Naturforschung C
researchProduct

Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

2015

Highlight We studied for the first time the temporal and spatial limits within which active and passive chlorophyll fluorescence measurements are comparable.

Chlorophyll0106 biological sciencesCanopyStomatal conductance010504 meteorology & atmospheric sciencesNitrogenPhysiologyGrowing seasonPlant ScienceBiologyPhotosynthesisAtmospheric sciences01 natural sciencesFluorescencechemistry.chemical_compoundBotanyLeaf sizeChlorophyll fluorescenceTriticum0105 earth and related environmental scienceschlorophyll content.Photosynthetic capacityPlant LeavesFLDddc:580chemistryChlorophyllFluowatPAMResearch Paper010606 plant biology & botany
researchProduct

Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges

2014

Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF…

ChlorophyllChlorophyll aMETIS-306570PhysiologyRemote sensing applicationEcologyChlorophyll AContext (language use)Plant ScienceBiologyPhotochemical Reflectance IndexPhotosynthesisFluorescencePlant Leaveschemistry.chemical_compoundchemistryITC-ISI-JOURNAL-ARTICLEPhotosynthetic acclimationRemote Sensing TechnologyThylakoid membrane organizationBiomassSeasonsPhotosynthesisBiological systemChlorophyll fluorescenceJournal of Experimental Botany
researchProduct

Pigment binding of photosystem I light-harvesting proteins.

2002

Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in t…

ChlorophyllChlorophyll aPhotosystem IIPigment bindingPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesBiologyXanthophyllsPhotosystem IBiochemistrychemistry.chemical_compoundPigmentSolanum lycopersicumMolecular BiologyP700Binding SitesPhotosystem I Protein ComplexChlorophyll Afood and beveragesPhotosystem II Protein ComplexCell BiologyPigments Biologicalbeta CarotenePlant LeavesSpectrometry FluorescencechemistryBiochemistryChlorophyllvisual_artvisual_art.visual_art_mediumViolaxanthinThe Journal of biological chemistry
researchProduct

Decreasing the chlorophyll a/b ratio in reconstituted LHCII: Structural and functional consequences

1999

Trimeric (bT) and monomeric (bM) light-harvesting complex II (LHCII) with a chlorophyll a/b ratio of 0.03 were reconstituted from the apoprotein overexpressed in Escherichia coli. Chlorophyll/xanthophyll and chlorophyll/protein ratios of bT complexes and 'native' LHCII are rather similar, namely, 0.28 vs 0. 27 and 10.5 +/- 1.5 vs 12, respectively, indicating the replacement of most chlorophyll a molecules with chlorophyll b, leaving one chlorophyll a per trimeric complex. The LD spectrum of the bT complexes strongly suggests that the chlorophyll b molecules adopt orientations similar to those of the chlorophylls a that they replace. The circular dichroism (CD) spectra of bM and bT complexes…

ChlorophyllChlorophyll bProtein FoldingChlorophyll aCircular dichroismPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein Complexesmedicine.disease_causeBiochemistryAbsorptionStructure-Activity Relationshipchemistry.chemical_compoundThermolysinmedicineEscherichia colichemistry.chemical_classificationPigmentationChlorophyll ACircular DichroismCrystallographySpectrometry FluorescenceMonomerEnergy TransferchemistrySpectrophotometryChlorophyllXanthophyllBiochemistry
researchProduct

Exchange of Pigment-Binding Amino Acids in Light-Harvesting Chlorophyll a/b Protein

1999

Four amino acids in the major light-harvesting chlorophyll (Chl) a/b complex (LHCII) that are thought to coordinate Chl molecules have been exchanged with amino acids that presumably cannot bind Chl. Amino acids H68, Q131, Q197, and H212 are positioned in helixes B, C, A, and D, respectively, and, according to the LHCII crystal structure [Kühlbrandt, W., et al. (1994) Nature 367, 614-621], coordinate the Chl molecules named a(5), b(6), a(3), and b(3). Moreover, a double mutant was analyzed carrying exchanges at positions E65 and H68, presumably affecting Chls a(4) and a(5). All mutant proteins could be reconstituted in vitro with pigments, although the thermal stability of the resulting mut…

ChlorophyllChloroplastsMacromolecular SubstancesStereochemistryMolecular Sequence DataPhotosynthetic Reaction Center Complex ProteinsPigment bindingLight-Harvesting Protein ComplexesTrimerBiochemistrychemistry.chemical_compoundAmino Acid SequenceAmino AcidsPeptide sequencePlant Proteinschemistry.chemical_classificationBinding SitesChlorophyll APeasPhotosystem II Protein Complexfood and beveragesAmino acidChloroplastB vitaminsAmino Acid SubstitutionchemistryChlorophyllThylakoidMutagenesis Site-DirectedCarrier ProteinsBiochemistry
researchProduct