Search results for "T method"

showing 10 items of 1254 documents

On a topology optimization problem governed by two-dimensional Helmholtz equation

2015

The paper deals with a class of shape/topology optimization problems governed by the Helmholtz equation in 2D. To guarantee the existence of minimizers, the relaxation is necessary. Two numerical methods for solving such problems are proposed and theoretically justified: a direct discretization of the relaxed formulation and a level set parametrization of shapes by means of radial basis functions. Numerical experiments are given.

Computational MathematicsControl and OptimizationLevel setLevel set methodDiscretizationHelmholtz equationApplied MathematicsNumerical analysisTopology optimizationMathematical analysisRelaxation (approximation)ParametrizationMathematicsComputational Optimization and Applications
researchProduct

Finite element analysis of varitional crimes for a quasilinear elliptic problem in 3D

2000

We examine a finite element approximation of a quasilinear boundary value elliptic problem in a three-dimensional bounded convex domain with a smooth boundary. The domain is approximated by a polyhedron and a numerical integration is taken into account. We apply linear tetrahedral finite elements and prove the convergence of approximate solutions on polyhedral domains in the $W^1_2$ -norm to the true solution without any additional regularity assumptions.

Computational MathematicsElliptic curvePolyhedronApplied MathematicsNumerical analysisNorm (mathematics)Bounded functionMathematical analysisBoundary value problemFinite element methodNumerical integrationMathematicsNumerische Mathematik
researchProduct

Parallel finite element splitting-up method for parabolic problems

1991

An efficient method for solving parabolic systems is presented. The proposed method is based on the splitting-up principle in which the problem is reduced to a series of independent 1D problems. This enables it to be used with parallel processors. We can solve multidimensional problems by applying only the 1D method and consequently avoid the difficulties in constructing a finite element space for multidimensional problems. The method is suitable for general domains as well as rectangular domains. Every 1D subproblem is solved by applying cubic B-splines. Several numerical examples are presented.

Computational MathematicsNumerical AnalysisFinite element spaceSeries (mathematics)Discontinuous Galerkin methodApplied MathematicsMathematical analysisMixed finite element methodAnalysisFinite element methodExtended finite element methodMathematicsNumerical Methods for Partial Differential Equations
researchProduct

On finite element approximation of the gradient for solution of Poisson equation

1981

A nonconforming mixed finite element method is presented for approximation of ?w with Δw=f,w| r =0. Convergence of the order $$\left\| {\nabla w - u_h } \right\|_{0,\Omega } = \mathcal{O}(h^2 )$$ is proved, when linear finite elements are used. Only the standard regularity assumption on triangulations is needed.

Computational MathematicsRate of convergenceApplied MathematicsMathematical analysisOrder (ring theory)Mixed finite element methodNabla symbolSuperconvergencePoisson's equationFinite element methodMathematicsExtended finite element methodNumerische Mathematik
researchProduct

A 3D multi-physics boundary element computational framework for polycrystalline materials micro-mechanics

2021

A recently developed novel three-dimensional (3D) computational framework for the analysis of polycrystalline materials at the grain scale is described in this lecture. The framework is based on the employment of: i) 3D Laguerre-Voronoi tessellations for the representation of the micro-morphology of polycrystalline materials; ii) boundary integral equations for the representation of the mechanics of the individual grains; iii) suitable cohesive traction-separation laws for the representation of the multi-physics behavior of the interfaces (either inter-granular or trans-granular) within the aggregate, which are the seat of damage initiation and evolution processes, up to complete decohesion…

Computational micro-mechanicMultiscale materials modelingPolycrystalline materialBoundary element method
researchProduct

A mixed finite element method for the heat flow problem

1981

A semidiscrete finite element scheme for the approximation of the spatial temperature change field is presented. The method yields a better order of convergence than the conventional use of linear elements.

Computer Networks and CommunicationsFinite element limit analysisApplied MathematicsMathematical analysishp-FEMMixed finite element methodSuperconvergenceBoundary knot methodFinite element methodMathematics::Numerical AnalysisComputational MathematicsSmoothed finite element methodSoftwareMathematicsExtended finite element methodBIT
researchProduct

Efficient Parallel Nash Genetic Algorithm for Solving Inverse Problems in Structural Engineering

2015

A parallel implementation of a game-theory based Nash Genetic Algorithm (Nash-GAs) is presented in this paper for solving reconstruction inverse problems in structural engineering. We compare it with the standard panmictic genetic algorithm in a HPC environment with up to eight processors. The procedure performance is evaluated on a fifty-five bar sized test case of discrete real cross-section types structural frame. Numerical results obtained on this application show a significant achieved increase of performance using the parallel Nash-GAs approach compared to the standard GAs or Parallel GAs.

Computer Science::Computer Science and Game TheoryMathematical optimizationbusiness.industryBar (music)Structural systemGenetic algorithmStructural engineeringInverse problembusinessAlgorithmFinite element methodMathematicsNash games
researchProduct

Average Performance Analysis of the Stochastic Gradient Method for Online PCA

2019

International audience; This paper studies the complexity of the stochastic gradient algorithm for PCA when the data are observed in a streaming setting. We also propose an online approach for selecting the learning rate. Simulation experiments confirm the practical relevance of the plain stochastic gradient approach and that drastic improvements can be achieved by learning the learning rate.

Computer Science::Machine Learning[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]Computer science0502 economics and business05 social sciencesMathematicsofComputing_NUMERICALANALYSISRelevance (information retrieval)050207 economics010501 environmental sciencesStochastic gradient method01 natural sciencesAlgorithm0105 earth and related environmental sciences
researchProduct

A Damage Identification Approach for Offshore Jacket Platforms Using Partial Modal Results and Artificial Neural Networks

2018

This paper presents a damage identification method for offshore jacket platforms using partially measured modal results and based on artificial intelligence neural networks. Damage identification indices are first proposed combining information of six modal results and natural frequencies. Then, finite element models are established, and damages in structural members are assumed by reducing the structural elastic modulus. From the finite element analysis for a training sample, both the damage identification indices and the damages are obtained, and neural networks are trained. These trained networks are further tested and used for damage prediction of structural members. The calculation res…

Computer science020101 civil engineering02 engineering and technologylcsh:Technology0201 civil engineeringWaterlinejacket platformlcsh:Chemistrysymbols.namesake0203 mechanical engineeringGeneral Materials Sciencenatural frequenciesInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesdamage identification indexfinite element modelArtificial neural networkbusiness.industrylcsh:TProcess Chemistry and Technologymodal shapesGeneral EngineeringStructural engineeringFinite element methodlcsh:QC1-999Computer Science ApplicationsIdentification (information)020303 mechanical engineering & transportsModallcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040symbolsSubmarine pipelinebusinesslcsh:Engineering (General). Civil engineering (General)artificial neural networkslcsh:Physics
researchProduct

Enhanced Mathematical Modelling of Interior Permanent Magnet Synchronous Machine Considering Saturation, Cross-Coupling and Spatial Harmonics effects

2020

The Interior Permanent Magnet Synchronous machine (IPMSM) conventional mathematical model is generally employed to investigate and simulate the IPMSM control and drive system behaviour. However, magnetic nonlinearities and spatial harmonics have a substantial influence on the IPMSM electromagnetic behaviour and performances. In order to simulate the IPMSM real electromagnetic behaviour, this paper describes an enhanced mathematical model that takes into account the saturation, cross-coupling and spatial harmonics effects. This model has been implemented in Matlab®/Simulink environment where the electric and magnetic parameters are derived from FEA investigations and implemented by the use o…

Computer science020208 electrical & electronic engineering05 social sciences02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciFinite element methodSpatial harmonicsCross-coupling Finite Element Analysis (FEA) Interior Permanent Magnet Synchronous Machine (IPMSM) saturation spatial harmonicsHigh fidelityControl theoryLookup table0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesSaturation (magnetic)Permanent magnet synchronous machine050107 human factors2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)
researchProduct