Search results for "T*-extension"

showing 3 items of 3 documents

Strong BV-extension and W1,1-extension domains

2021

We show that a bounded domain in a Euclidean space is a $W^{1,1}$-extension domain if and only if it is a strong $BV$-extension domain. In the planar case, bounded and strong $BV$-extension domains are shown to be exactly those $BV$-extension domains for which the set $\partial\Omega \setminus \bigcup_{i} \overline{\Omega}_i$ is purely $1$-unrectifiable, where $\Omega_i$ are the open connected components of $\mathbb{R}^2\setminus\overline{\Omega}$.

46E35 26B30Mathematics - Metric GeometrymatematiikkaMathematics::Complex VariablesBV-extensionFOS: MathematicsSobolev extensionMetric Geometry (math.MG)Analysis
researchProduct

Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiques

2011

In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan al…

Generalized double extensionInvariantPseudo-Eucliean Jordan algebras[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Lie algebra sp(2n)Pas de mot clé en français[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]Symmetric Novikov algebrasSolvable Lie algebrasDouble extensionsQuadratic Lie algebras[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]Adjoint orbitsT*-extension2-step nilpotentJordan-admissibleQuadratic Lie superalgebrasLie algebra o(m)
researchProduct

Bi-Lipschitz invariance of planar BV- and W1,1-extension domains

2021

We prove that a bi-Lipschitz image of a planar $BV$-extension domain is also a $BV$-extension domain, and that a bi-Lipschitz image of a planar $W^{1,1}$-extension domain is again a $W^{1,1}$-extension domain.

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBV-extensionClassical Analysis and ODEs (math.CA)FOS: MathematicsSobolev extension46E35funktionaalianalyysiFunctional Analysis (math.FA)
researchProduct