6533b870fe1ef96bd12cfbe8

RESEARCH PRODUCT

Strong BV-extension and W1,1-extension domains

Tapio RajalaMiguel García-bravo

subject

46E35 26B30Mathematics - Metric GeometrymatematiikkaMathematics::Complex VariablesBV-extensionFOS: MathematicsSobolev extensionMetric Geometry (math.MG)Analysis

description

We show that a bounded domain in a Euclidean space is a $W^{1,1}$-extension domain if and only if it is a strong $BV$-extension domain. In the planar case, bounded and strong $BV$-extension domains are shown to be exactly those $BV$-extension domains for which the set $\partial\Omega \setminus \bigcup_{i} \overline{\Omega}_i$ is purely $1$-unrectifiable, where $\Omega_i$ are the open connected components of $\mathbb{R}^2\setminus\overline{\Omega}$.

http://urn.fi/URN:NBN:fi:jyu-202208254341