Search results for "TELESCOPE"

showing 10 items of 499 documents

Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3

2021

Stanford, S. A., et al.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Calibration (statistics)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsColor space217101 natural sciencesCosmologyLarge-scale structure010309 optics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]galaxy spectroscopySettore FIS/05 - Astronomia e AstrofisicaSpitzer Space Telescope0103 physical sciencesDISTRIBUTIONSAstrophysics::Solar and Stellar AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PHOTOMETRIC REDSHIFTS010303 astronomy & astrophysicsWeak gravitational lensingAstrophysics::Galaxy AstrophysicsPhysicsHardware_MEMORYSTRUCTURESAstrophysics::Instrumentation and Methods for AstrophysicsEuclidAstronomy and AstrophysicsRedshiftGalaxyCosmologySpace and Planetary ScienceGalaxy spectroscopyDark energyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The miniJPAS survey: a preview of the Universe in 56 colours

2021

Full list of authors: Bonoli, S.; Marín-Franch, A.; Varela, J.; Vázquez Ramió, H.; Abramo, L. R.; Cenarro, A. J.; Dupke, R. A.; Vílchez, J. M.; Cristóbal-Hornillos, D.; González Delgado, R. M.; Hernández-Monteagudo, C.; López-Sanjuan, C.; Muniesa, D. J.; Civera, T.; Ederoclite, A.; Hernán-Caballero, A.; Marra, V.; Baqui, P. O.; Cortesi, A.; Cypriano, E. S.; Daflon, S.; de Amorim, A. L.; Díaz-García, L. A.; Diego, J. M.; Martínez-Solaeche, G.; Pérez, E.; Placco, V. M.; Prada, F.; Queiroz, C.; Alcaniz, J.; Alvarez-Candal, A.; Cepa, J.; Maroto, A. L.; Roig, F.; Siffert, B. B.; Taylor, K.; Benitez, N.; Moles, M.; Sodré, L.; Carneiro, S.; Mendes de Oliveira, C.; Abdalla, E.; Angulo, R. E.; Apari…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectFOS: Physical sciencesAstrophysicsastronomical databases: miscellaneousSurveyslaw.inventionPhotometry (optics)Telescopetechniques: photometricExtended Groth StripsurveysObservatorylaw[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]observations [Cosmology]Instrumentation and Methods for Astrophysics (astro-ph.IM)stars: generalmedia_commonPhysicsgeneral [Stars]photometric [Techniques]Astronomy and AstrophysicsQuasargeneral [Galaxies]115 Astronomy Space sciencegalaxies: generalAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSpace and Planetary ScienceSkyAstrophysics of Galaxies (astro-ph.GA)cosmology: observationsmiscellaneous [Astronomical databases][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Baseline design of the thermal blocking filters for the X-IFU detector on board ATHENA

2014

ATHENA is an advanced X-ray observatory designed by a large European consortium to address the science theme "Hot and Energetic Universe" recently selected by ESA for L2 – the second Large-class mission within the Cosmic Vision science program (launch scheduled in 2028). One of the key instruments of the mission is the X-ray Integral Field Unit (X-IFU), an array of Transition Edge Sensor (TES) micro-calorimeters with high energy resolution (2.5 eV @ 6 keV) in the energy range 0.2÷12 keV, operating at the focal plane of a large effective area high angular resolution (5" HEW) grazing incidence X-ray telescope. The X-IFU operates at temperatures below 100 mK and thus requires a sophisticated c…

CryostatCosmic VisionVisionShieldsX-ray telescopeGrazing incidencelaw.inventionTelescopeOpticsSettore FIS/05 - Astronomia E AstrofisicalawX-raysElectronicmicro-calorimeterOptical and Magnetic MaterialsElectrical and Electronic EngineeringX-ray telescopesPhysicsX-IFUSpatial resolutionSounding rocketEquipment and servicesbusiness.industrySensorsApplied MathematicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsOptical Blocking FiltersComputer Science Applications1707 Computer Vision and Pattern RecognitionDetector arraysCondensed Matter PhysicsATHENAmissionsCultural heritageTransition edge sensorbusinessATHENA; micro-calorimeter; missions; Optical Blocking Filters; X-IFU; X-rays; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringTelescopes
researchProduct

Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

2016

ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …

CryostatX-ray AstronomyAtomic and Molecular Physics and OpticATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Condensed Matter Physics; Atomic and Molecular Physics and Optics; Materials Science (all)ShieldsCondensed Matter Physic01 natural sciencesThermal Filterlaw.invention010309 opticsTelescopeATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Atomic and Molecular Physics and Optics; Materials Science (all); Condensed Matter PhysicsOpticsSettore FIS/05 - Astronomia E AstrofisicaConceptual designlawAtomic and Molecular Physics0103 physical sciencesGeneral Materials ScienceElectronics010303 astronomy & astrophysicsThermal FiltersPhysicsX-ray astronomyX-IFUbusiness.industryDetectorCondensed Matter PhysicsAtomic and Molecular Physics and OpticsATHENACardinal pointMaterials Science (all)and Opticsbusiness
researchProduct

BART: The Czech Autonomous Observatory

2010

The High Energy Astrophysics group of the stellar department of the Astronomical Institute in Ondřejov operates two small aperture robotic telescopes called BART and D50. Both telescopes are capable of making automatic followup observation of gamma-ray burst optical counterparts. This paper deals with the smaller telescope BART.

CzechPhysicsHigh-energy astronomylcsh:AstronomyAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAstrophysicsLarge apertureAstrophysics::Cosmology and Extragalactic Astrophysicslanguage.human_languagelaw.inventionTelescopelcsh:QB1-991Space and Planetary ScienceObservatorylawlanguageAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsAdvances in Astronomy
researchProduct

Two Remarkably Luminous Galaxy Candidates at z ≈ 10-12 Revealed by JWST

2022

The first few 100 Myr at z > 10 mark the last major uncharted epoch in the history of the universe, where only a single galaxy (GN-z11 at z ≈ 11) is currently spectroscopically confirmed. Here we present a search for luminous z > 10 galaxies with JWST/NIRCam photometry spanning ≈1–5 μm and covering 49 arcmin2 from the public JWST Early Release Science programs (CEERS and GLASS). Our most secure candidates are two MUV ≈ −21 systems: GLASS-z12 and GLASS-z10. These galaxies display abrupt ≳1.8 mag breaks in their spectral energy distributions (SEDs), consistent with complete absorption of flux bluewards of Lyα that is redshifted to =+z12.40.3 0.1and=+z10.40.5 0.4. Lower redshift interlopers su…

DECOMPOSITIONII.594Early universeFOS: Physical sciences2291435PROPAGATION734595310Galaxies and CosmologyUNCERTAINTIESGalaxy evolutionGalaxy formationTO 8REIONIZATIONMASSIVE GALAXIESAstronomy and AstrophysicsBRIGHT ENDAstrophysics - Astrophysics of GalaxiesEVOLUTIONSTELLARSpace and Planetary Science5101 Astronomical SciencesAstrophysics of Galaxies (astro-ph.GA)High-redshift galaxiesJames Webb Space Telescope51 Physical Sciences
researchProduct

Continuous-Variable Tomography of Solitary Electrons

2019

A method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source. These are highly localised distributions, isolated fro…

Density matrixSciencePhysics::Medical PhysicsComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyQuantum entanglementElectron/639/925/92701 natural sciencesGeneral Biochemistry Genetics and Molecular Biology5108 Quantum Physics510symbols.namesake5102 Atomic Molecular and Optical PhysicsElectronic and spintronic devices0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Wigner distribution function010306 general physicslcsh:Science/639/766/1130/2798/639/925/357/1017PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dotsFermi levelQarticleGeneral ChemistryQuantum tomography021001 nanoscience & nanotechnologyComputational physicsNanoscale devicessymbolslcsh:Q0210 nano-technology51 Physical SciencesCoherence (physics)Fermi Gamma-ray Space Telescope
researchProduct

Center-to-limb variation of the area covered by magnetic bright points in the quiet Sun

2011

CONTEXT: The quiet Sun magnetic fields produce ubiquitous bright points (BPs) that cover a significant fraction of the solar surface. Their contribution to the total solar irradiance (TSI) is so-far unknown. AIMS: To measure the center-to-limb variation (CLV) of the fraction of solar surface covered by quiet Sun magnetic bright points. The fraction is referred to as 'fraction of covered surface', or FCS. METHODS: Counting of the area covered by BPs in G-band images obtained at various heliocentric angles with the 1-m Swedish Solar Telescope on La Palma. Through restoration, the images are close to the diffraction limit of the instrument (~0.1 arcsec). RESULTS: The FCS is largest at disk cen…

DiffractionPhysicsPhotosphereFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsSolar irradianceMagnetic fieldSolar telescopeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceQUIETPhysics::Space PhysicsAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsVariation (astronomy)Solar and Stellar Astrophysics (astro-ph.SR)Astronomy &amp; Astrophysics
researchProduct

Observational Approach and Perspective

1983

Well you did not cover more than half of my planned talk! (laughter). Let me comment on interferometric techniques, in particular speckle imaging which you mentioned. Doing speckle imaging with the largest telescopes now available will not give you better than the theoretical resolving power of the telescope. With a 4m telescope that is about 30 marc sec in the visible. That happens to be the radius of the supergiant Betelguese. So you are not going to achieve much with speckle imaging on these stars. One technique which has not been adequately exploited is that of lunar occultation which can give much better angular resolution than speckle, of the order of 2-3 marc sec. By using suitably c…

Dwarf starComputer scienceAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyOccultationlaw.inventionTelescopeSpeckle patternInterferometryStarslawAstrophysics::Solar and Stellar AstrophysicsAngular resolutionAstrophysics::Earth and Planetary AstrophysicsSpeckle imagingAstrophysics::Galaxy Astrophysics
researchProduct

Hiding in plain sight: observing planet-starspot crossings with the James Webb Space Telescope

2021

Transiting exoplanets orbiting active stars frequently occult starspots and faculae on the visible stellar disc. Such occultations are often rejected from spectrophotometric transits, as it is assumed they do not contain relevant information for the study of exoplanet atmopsheres. However, they can provide useful constraints to retrieve the temperature of active features and their effect on transmission spectra. We analyse the capabilities of the James Webb Space Telescope in the determination of the spectra of occulted starspots, despite its lack of optical wavelength instruments on board. Focusing on K and M spectral types, we simulate starspots with different temperatures and in differen…

Earth and Planetary Astrophysics (astro-ph.EP)PhysicsJames Webb Space TelescopeStarspotAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomyAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsStellar classificationExoplanetStarsWavelengthAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePlanetAstrophysics::Solar and Stellar AstrophysicsPrismAstrophysics::Earth and Planetary AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct