Search results for "TELESCOPE"
showing 10 items of 499 documents
Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3
2021
Stanford, S. A., et al.
The miniJPAS survey: a preview of the Universe in 56 colours
2021
Full list of authors: Bonoli, S.; Marín-Franch, A.; Varela, J.; Vázquez Ramió, H.; Abramo, L. R.; Cenarro, A. J.; Dupke, R. A.; Vílchez, J. M.; Cristóbal-Hornillos, D.; González Delgado, R. M.; Hernández-Monteagudo, C.; López-Sanjuan, C.; Muniesa, D. J.; Civera, T.; Ederoclite, A.; Hernán-Caballero, A.; Marra, V.; Baqui, P. O.; Cortesi, A.; Cypriano, E. S.; Daflon, S.; de Amorim, A. L.; Díaz-García, L. A.; Diego, J. M.; Martínez-Solaeche, G.; Pérez, E.; Placco, V. M.; Prada, F.; Queiroz, C.; Alcaniz, J.; Alvarez-Candal, A.; Cepa, J.; Maroto, A. L.; Roig, F.; Siffert, B. B.; Taylor, K.; Benitez, N.; Moles, M.; Sodré, L.; Carneiro, S.; Mendes de Oliveira, C.; Abdalla, E.; Angulo, R. E.; Apari…
Baseline design of the thermal blocking filters for the X-IFU detector on board ATHENA
2014
ATHENA is an advanced X-ray observatory designed by a large European consortium to address the science theme "Hot and Energetic Universe" recently selected by ESA for L2 – the second Large-class mission within the Cosmic Vision science program (launch scheduled in 2028). One of the key instruments of the mission is the X-ray Integral Field Unit (X-IFU), an array of Transition Edge Sensor (TES) micro-calorimeters with high energy resolution (2.5 eV @ 6 keV) in the energy range 0.2÷12 keV, operating at the focal plane of a large effective area high angular resolution (5" HEW) grazing incidence X-ray telescope. The X-IFU operates at temperatures below 100 mK and thus requires a sophisticated c…
Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design
2016
ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …
BART: The Czech Autonomous Observatory
2010
The High Energy Astrophysics group of the stellar department of the Astronomical Institute in Ondřejov operates two small aperture robotic telescopes called BART and D50. Both telescopes are capable of making automatic followup observation of gamma-ray burst optical counterparts. This paper deals with the smaller telescope BART.
Two Remarkably Luminous Galaxy Candidates at z ≈ 10-12 Revealed by JWST
2022
The first few 100 Myr at z > 10 mark the last major uncharted epoch in the history of the universe, where only a single galaxy (GN-z11 at z ≈ 11) is currently spectroscopically confirmed. Here we present a search for luminous z > 10 galaxies with JWST/NIRCam photometry spanning ≈1–5 μm and covering 49 arcmin2 from the public JWST Early Release Science programs (CEERS and GLASS). Our most secure candidates are two MUV ≈ −21 systems: GLASS-z12 and GLASS-z10. These galaxies display abrupt ≳1.8 mag breaks in their spectral energy distributions (SEDs), consistent with complete absorption of flux bluewards of Lyα that is redshifted to =+z12.40.3 0.1and=+z10.40.5 0.4. Lower redshift interlopers su…
Continuous-Variable Tomography of Solitary Electrons
2019
A method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source. These are highly localised distributions, isolated fro…
Center-to-limb variation of the area covered by magnetic bright points in the quiet Sun
2011
CONTEXT: The quiet Sun magnetic fields produce ubiquitous bright points (BPs) that cover a significant fraction of the solar surface. Their contribution to the total solar irradiance (TSI) is so-far unknown. AIMS: To measure the center-to-limb variation (CLV) of the fraction of solar surface covered by quiet Sun magnetic bright points. The fraction is referred to as 'fraction of covered surface', or FCS. METHODS: Counting of the area covered by BPs in G-band images obtained at various heliocentric angles with the 1-m Swedish Solar Telescope on La Palma. Through restoration, the images are close to the diffraction limit of the instrument (~0.1 arcsec). RESULTS: The FCS is largest at disk cen…
Observational Approach and Perspective
1983
Well you did not cover more than half of my planned talk! (laughter). Let me comment on interferometric techniques, in particular speckle imaging which you mentioned. Doing speckle imaging with the largest telescopes now available will not give you better than the theoretical resolving power of the telescope. With a 4m telescope that is about 30 marc sec in the visible. That happens to be the radius of the supergiant Betelguese. So you are not going to achieve much with speckle imaging on these stars. One technique which has not been adequately exploited is that of lunar occultation which can give much better angular resolution than speckle, of the order of 2-3 marc sec. By using suitably c…
Hiding in plain sight: observing planet-starspot crossings with the James Webb Space Telescope
2021
Transiting exoplanets orbiting active stars frequently occult starspots and faculae on the visible stellar disc. Such occultations are often rejected from spectrophotometric transits, as it is assumed they do not contain relevant information for the study of exoplanet atmopsheres. However, they can provide useful constraints to retrieve the temperature of active features and their effect on transmission spectra. We analyse the capabilities of the James Webb Space Telescope in the determination of the spectra of occulted starspots, despite its lack of optical wavelength instruments on board. Focusing on K and M spectral types, we simulate starspots with different temperatures and in differen…