Search results for "TELOMERES"

showing 10 items of 29 documents

Telomere length and physical performance at older ages:an individual participant meta-analysis

2013

<p>Background: Telomeres are involved in cellular ageing and shorten with increasing age. If telomere length is a valuable biomarker of ageing, then telomere shortening should be associated with worse physical performance, an ageing trait, but evidence for such an association is lacking. The purpose of this study was to examine whether change in telomere length is associated with physical performance.</p>\ud \ud <p>Methods: Using data from four UK adult cohorts (ages 53–80 years at baseline), we undertook cross-sectional and longitudinal analyses. We analysed each study separately and then used meta-analytic methods to pool the results. Physical performance was measured us…

MaleGerontologyAnatomy and PhysiologyEpidemiologyPhysical fitnesslcsh:MedicineWalkingCohort StudiesGrip strength0302 clinical medicineLongitudinal StudiesWellcome Trustlcsh:ScienceMusculoskeletal SystemEpidemiological MethodsAged 80 and overMolecular Epidemiology0303 health sciencesMultidisciplinaryHand StrengthChromosome BiologyStatistics15/SAG09977Epidemiology of AgingGenomicsMiddle AgedEPSRCMRCTelomeresBBSRCMedicineFemalePublic HealthCell agingResearch ArticleAdultClinical Research DesignPostureBiostatisticsBiology03 medical and health sciencesTelomere HomeostasisHand strengthGeneticsHumansESRCStatistical MethodsBiologyAged030304 developmental biologyBalance (ability)business.industrylcsh:RTelomere HomeostasisRCUKHuman GeneticsPreferred walking speedBiomarker EpidemiologyCross-Sectional StudiesGeriatricsPhysical FitnessAgeinglcsh:QbusinessMathematics030217 neurology & neurosurgeryDemography
researchProduct

Relative Telomere Length and Cardiovascular Risk Factors

2019

(1) Background: Telomeres are repetitive DNA sequences located at the extremities of chromosomes that maintain genetic stability. Telomere biology is relevant to several human disorders and diseases, specifically cardiovascular disease. To better understand the link between cardiovascular disease and telomere length, we studied the effect of relative telomere length (RTL) on cardiovascular risk factors in a large population-based sample. (2) Methods: RTL was measured by a real-time quantitative polymerase chain reaction in subjects of the population-based Gutenberg Health Study (n = 4944). We then performed an association study of RTL with known cardiovascular risk factors of smoking status…

Malecardiovascular risk factorsmedicine.medical_specialtyCardiovascular risk factorsPopulationlcsh:QR1-502Disease030204 cardiovascular system & hematologyBiochemistryArticlelcsh:MicrobiologyBody Mass Index03 medical and health scienceschemistry.chemical_compound0302 clinical medicinecardiovascular diseaseInternal medicinetelomere lengthHumansMedicine030212 general & internal medicineeducationMolecular BiologyTriglyceridesAgededucation.field_of_studybusiness.industryCholesterolSmokingAge FactorsTelomere HomeostasisMiddle AgedtelomeresTelomereCholesterolEndocrinologyBlood pressurechemistryCardiovascular DiseasesageingAgeingFemalebusinessBody mass indexBiomolecules
researchProduct

Acetylated nucleosome assembly on telomeric DNAs

2003

Abstract The role of histone N-terminal domains on the thermodynamic stability of nucleosomes assembled on several different telomeric DNAs as well as on ‘average’ sequence DNA and on strong nucleosome positioning sequences, has been studied by competitive reconstitution. We find that histone tails hyperacetylation favors nucleosome formation, in a similar extent for all the examined sequences. On the contrary, removal of histone terminal domains by selective trypsinization causes a decrease of nucleosome stability which is smaller for telomeres compared to the other sequences examined, suggesting that telomeric sequences have only minor interactions with histone tails. Micrococcal nuclease…

Nucleosome assemblyBiophysicsBinding CompetitiveBiochemistryHistonesKluyveromycesHistone H1Histone methylationAnimalsHumansMicrococcal NucleaseNucleosomeHistone codeHistone octamerChemistrynucleosomeChlamydomonasOrganic Chemistryhistone acetylationhistone acetylation; nucleosome; nucleosome positioning; telomeres; thermodynamic stabilityAcetylationDNATelomeretelomeresLinker DNANucleosomesProtein Structure TertiaryBiochemistryChromatosomeBiophysicsthermodynamic stabilityThermodynamicsnucleosome positioningBiophysical Chemistry
researchProduct

An Organometallic Gold(I) Bis‐N‐Heterocyclic Carbene Complex with Multimodal Activity in Ovarian Cancer Cells

2020

Abstract The organometallic AuI bis‐N‐heterocyclic carbene complex [Au(9‐methylcaffeine‐8‐ylidene)2]+ (AuTMX2) was previously shown to selectively and potently stabilise telomeric DNA G‐quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry‐based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal‐based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non‐covalent interactions. Global protein expression changes of treated cancer cell…

ProteomicsNucleolusCancer | Very Important PaperContext (language use)Antineoplastic Agents010402 general chemistryProteomicsG-quadruplex01 natural sciencesCatalysischemistry.chemical_compoundgold complexesCaffeineCell Line TumorOrganometallic CompoundscancerHumansN-heterocyclic carbenesShotgun proteomicsMode of actionOvarian NeoplasmsFull Paper010405 organic chemistryChemistryOrganic ChemistryGeneral ChemistryFull PaperstelomeresG-quadruplexes0104 chemical sciencesddc:BiochemistryCancer cellFemaleGoldCarbeneMethane
researchProduct

The histone deacetylase Rpd3 regulates telomeric heterochromatin structure of polytene chromosomes

2010

Rpd3 telomeres Drosophila
researchProduct

The telomeric Cdc13-Stn1-Ten1 complex regulates RNA polymerase II transcription

2019

Advance article.

S phase transcribed genesTranscription GeneticChromosomal Proteins Non-HistoneCell Cycle ProteinsRNA polymerase IIBur1[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]Genome Integrity Repair and ReplicationS Phase0302 clinical medicineTranscription (biology)Gene Expression Regulation FungalTranscriptional regulation0303 health sciencesCdc13-Stn1-Ten1biology030302 biochemistry & molecular biologyTranscription regulationRNA pol IIChromatinCyclin-Dependent KinasesCell biologyTelomeres030220 oncology & carcinogenesisRNA Polymerase IITranscriptional Elongation FactorsSaccharomyces cerevisiae ProteinsDNA polymerase IITelomere-Binding ProteinsSaccharomyces cerevisiae[SDV.CAN]Life Sciences [q-bio]/CancerSaccharomyces cerevisiaeCST complex03 medical and health sciencesGeneticsBudding yeastGenomesGene030304 developmental biologyHmo1RNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyPromoterbiology.organism_classificationCromosomesTelomerebiology.proteinSpt5Cyclin-Dependent Kinase-Activating Kinase
researchProduct

The role of telomeres and telomerase in the senescence of postmitotic cells

2020

Senescence is a process related to the stopping of divisions and changes leading the cell to the SASP phenotype. Permanent senescence of many SASP cells contributes to faster aging of the body and development of age-related diseases due to the release of pro-inflammatory factors. Both mitotically active and non-dividing cells can undergo senescence as a result of activation of different molecular pathways. Telomeres, referred to as the molecular clock, direct the dividing cell into the aging pathway when reaching a critical length. In turn, the senescence of postmitotic cells depends not on the length of telomeres, but their functionality. Dysfunctional telomeres are responsible for trigger…

SenescenceTelomeraseDNA damageCellMitosisMitochondrionBiologySenescenceBiochemistry03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansTelomeraseMolecular BiologyCellular Senescence030304 developmental biology0303 health sciencesKinaseCell BiologyTelomereCell biologyTelomereTelomeresmedicine.anatomical_structureCytoplasm030220 oncology & carcinogenesisDNA Repair
researchProduct

Telomere dysfunction in cells with arsenic-induced genomic instability

2005

It is well known that the occurrence of dicentric chromosomes represent signature of telomere dysfunction and is a clear symptom of genomic instability. V79 Chinese hamster cells, treated with 10µM sodium arsenite for 24h and allowed to grow in drug-free medium (ASO cells), showed genomic instability with aneuploidy and nuclear abnormalities as well as the appearance of dicentric chromosomes since the 90th cell generation. TRAP assay was performed on growing ASO cells and on clones isolated during the course of the expanded growth. As expected, some clones with dicentric chromosomes and severely reduced telomerase activity went to death; surprisingly, other clones also bearing chromosomal e…

Settore BIO/18 - GeneticaTelomeres telomerase arsenic
researchProduct

From cellular senescence to age-associated diseases: miRNAs as tools and targets for healthy ageing

2017

miRNAs are the most abundant RNA species to be found in cell-free blood, encapsulated within microvesicles or bound to proteins. miRNAs play essential roles in the regulation of various biological processes. Moreover, specific changes in miRNA transcription levels or miRNA secretory levels have been linked to the development and progression of certain age-related diseases. So, they might be an ideal target for modulating healthy ageing

Settore MED/04 - Patologia GeneraleAgeing miRNA Senescence Telomeres
researchProduct

Chromatin modifiers and recombination factors promote a telomere fold-back structure, that is lost during replicative senescence.

2020

Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a dis…

TelomeraseProtein Folding:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::DNA-Binding Proteins::Rad52 DNA Repair and Recombination Protein [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins [Medical Subject Headings]Gene ExpressionYeast and Fungal ModelsArtificial Gene Amplification and ExtensionQH426-470BiochemistryPolymerase Chain ReactionChromosome conformation captureHistonesCromatina0302 clinical medicineSirtuin 2Macromolecular Structure AnalysisSilent Information Regulator Proteins Saccharomyces cerevisiaeCellular Senescence:Organisms::Eukaryota::Fungi::Yeasts::Saccharomyces::Saccharomyces cerevisiae [Medical Subject Headings]0303 health sciencesChromosome BiologyEukaryota:Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Replication [Medical Subject Headings]TelomereSubtelomere:Anatomy::Cells::Cellular Structures::Intracellular Space::Cell Nucleus::Cell Nucleus Structures::Intranuclear Space::Chromosomes::Chromosome Structures::Telomere [Medical Subject Headings]Chromatin3. Good healthChromatinCell biologyNucleic acidsTelomeres:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Cycle::Cell Division::Telomere Homeostasis [Medical Subject Headings]Experimental Organism SystemsDaño del ADNEpigeneticsResearch ArticleSenescenceDNA Replication:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases::Amidohydrolases::Histone Deacetylases [Medical Subject Headings]Chromosome Structure and FunctionProtein StructureSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeBiologyResearch and Analysis MethodsHistone DeacetylasesChromosomes03 medical and health sciencesSaccharomycesModel Organisms:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Transferases::One-Carbon Group Transferases::Methyltransferases [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Intracellular Signaling Peptides and Proteins::Sirtuins::Sirtuin 2 [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins::Silent Information Regulator Proteins Saccharomyces cerevisiae [Medical Subject Headings]DNA-binding proteinsGenetics:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Recombinases::Rec A Recombinases::Rad51 Recombinase [Medical Subject Headings]Molecular Biology TechniquesMolecular Biology030304 developmental biologyCromosomasSenescencia celularOrganismsFungiBiology and Life SciencesProteinsTelomere HomeostasisCell BiologyDNAMethyltransferasesG2-M DNA damage checkpointProteína recombinante y reparadora de ADN Rad52YeastTelomereRad52 DNA Repair and Recombination ProteinRepressor ProteinsAnimal Studies:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Transcription Factors::Repressor Proteins [Medical Subject Headings]DNA damageRad51 RecombinaseHomologous recombination030217 neurology & neurosurgeryTelómeroDNA DamagePLoS Genetics
researchProduct