Search results for "TERMINI"

showing 10 items of 365 documents

A kinetic model for the oxidation of benzenethiol catalyzed by the [MoVIO2(O2CC(S)(C6H5)2)2]2− complex intercalated in a Zn(II)–Al(III) layered doubl…

2009

Abstract The heterogeneous oxidation of benzenethiol catalyzed by the dianionic bis(2-sulfanyl-2,2-diphenylethanoxycarbonyl) dioxomolybdate (VI) complex intercalated into a Zn(II)–Al(III) layered double hydroxide (LDH) host have been investigated under aerobic conditions. The kinetics of the system has been analysed in detail. In ethanol, the benzenethiol is cleanly oxidized to diphenyl disulfide in the acidic media provided by the protonic resin Amberlite IR-120(H). The reaction is second-order in benzenethiol, and the apparent rate coefficient has been found to be proportional to the catalyst weight and inversely proportional to the initial concentration of the substrate. A catalytic cycl…

Diphenyl disulfideProcess Chemistry and TechnologyInorganic chemistryComproportionationRate-determining stepMedicinal chemistryCatalysisCatalysischemistry.chemical_compoundchemistryCatalytic cycleHydroperoxylOxidation stateHydroxidePhysical and Theoretical ChemistryJournal of Molecular Catalysis A: Chemical
researchProduct

Algorithmic Information Theory and Computational Complexity

2013

We present examples where theorems on complexity of computation are proved using methods in algorithmic information theory. The first example is a non-effective construction of a language for which the size of any deterministic finite automaton exceeds the size of a probabilistic finite automaton with a bounded error exponentially. The second example refers to frequency computation. Frequency computation was introduced by Rose and McNaughton in early sixties and developed by Trakhtenbrot, Kinber, Degtev, Wechsung, Hinrichs and others. A transducer is a finite-state automaton with an input and an output. We consider the possibilities of probabilistic and frequency transducers and prove sever…

Discrete mathematicsAverage-case complexityAlgorithmic information theoryTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESKolmogorov complexityDescriptive complexity theoryComputational physicsStructural complexity theoryTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonAsymptotic computational complexityComputer Science::Formal Languages and Automata TheoryComputational number theoryMathematics
researchProduct

On the determinization of weighted finite automata

1998

We study determinization of weighted finite-state automata (WFAs), which has important applications in automatic speech recognition (ASR). We provide the first polynomial-time algorithm to test for the twins property, which determines if a WFA admits a deterministic equivalent. We also provide a rigorous analysis of a determinization algorithm of Mohri, with tight bounds for acyclic WFAs. Given that WFAs can expand exponentially when determinized, we explore why those used in ASR tend to shrink. The folklore explanation is that ASR WFAs have an acyclic, multi-partite structure. We show, however, that there exist such WFAs that always incur exponential expansion when determinized. We then in…

Discrete mathematicsClass (set theory)Finite-state machineBinary treeComputer Science::SoundComputer scienceDeterministic automatonProbabilistic automatonStructure (category theory)AlgorithmAutomaton
researchProduct

Simulation is decidable for one-counter nets

1998

We prove that the simulation preorder is decidable for the class of one-counter nets. A one-counter net consists of a finite-state machine operating on a variable (counter) which ranges over the natural numbers. Each transition can increase or decrease the value of the counter. A transition may not be performed if this implies that the value of the counter becomes negative. The class of one-counter nets is computationally equivalent to the class of Petri nets with one unbounded place, and to the class of pushdown automata where the stack alphabet is restricted to one symbol. To our knowledge, this is the first result in the literature which gives a positive answer to the decidability of sim…

Discrete mathematicsClass (set theory)Finite-state machineDeterministic automatonSimulation preorderConcurrencyPushdown automatonPetri netComputer Science::Formal Languages and Automata TheoryDecidabilityMathematics
researchProduct

On a class of languages recognizable by probabilistic reversible decide-and-halt automata

2009

AbstractWe analyze the properties of probabilistic reversible decide-and-halt automata (DH-PRA) and show that there is a strong relationship between DH-PRA and 1-way quantum automata. We show that a general class of regular languages is not recognizable by DH-PRA by proving that two “forbidden” constructions in minimal deterministic automata correspond to languages not recognizable by DH-PRA. The shown class is identical to a class known to be not recognizable by 1-way quantum automata. We also prove that the class of languages recognizable by DH-PRA is not closed under union and other non-trivial Boolean operations.

Discrete mathematicsClass (set theory)Quantum automataNested wordGeneral Computer ScienceProbabilistic logicAutomatonTheoretical Computer ScienceRegular languageDeterministic automatonProbabilistic automatonQuantum finite automataProbabilistic automataComputer Science::Formal Languages and Automata TheoryMathematicsComputer Science(all)Theoretical Computer Science
researchProduct

Quantum Finite State Automata over Infinite Words

2010

The study of finite state automata working on infinite words was initiated by Buchi [1]. Buchi discovered connection between formulas of the monadic second order logic of infinite sequences (S1S) and ω-regular languages, the class of languages over infinite words accepted by finite state automata. Few years later, Muller proposed an alternative definition of finite automata on infinite words [4]. McNaughton proved that with Muller’s definition, deterministic automata recognize all ω-regular languages [2]. Later, Rabin extended decidability result of Buchi for S1S to the monadic second order of the infinite binary tree (S2S) [5]. Rabin theorem can be used to settle a number of decision probl…

Discrete mathematicsCombinatoricsFinite-state machineDeterministic finite automatonComputer Science::Logic in Computer ScienceContinuous spatial automatonQuantum finite automataAutomata theoryNondeterministic finite automatonω-automatonComputer Science::Formal Languages and Automata TheoryDecidabilityMathematics
researchProduct

Combinatorics of Finite Words and Suffix Automata

2009

The suffix automaton of a finite word is the minimal deterministic automaton accepting the language of its suffixes. The states of the suffix automaton are the classes of an equivalence relation defined on the set of factors. We explore the relationship between the combinatorial properties of a finite word and the structural properties of its suffix automaton. We give formulas for expressing the total number of states and the total number of edges of the suffix automaton in terms of special factors of the word.

Discrete mathematicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)special factorNonlinear Sciences::Cellular Automata and Lattice GasesCombinatorics on WordAutomatonCombinatoricsCombinatorics on wordsDeterministic automatonSuffix automatonEquivalence relationQuantum finite automataSuffix automatonSuffixComputer Science::Data Structures and AlgorithmsComputer Science::Formal Languages and Automata TheoryWord (computer architecture)Mathematics
researchProduct

On the Power of Tree-Walking Automata

2000

Tree-walking automata (TWAs) recently received new attention in the fields of formal languages and databases. Towards a better understanding of their expressiveness, we characterize them in terms of transitive closure logic formulas in normal form. It is conjectured by Engelfriet and Hoogeboom that TWAs cannot define all regular tree languages, or equivalently, all of monadic second-order logic. We prove this conjecture for a restricted, but powerful, class of TWAs. In particular, we show that 1-bounded TWAs, that is TWAs that are only allowed to traverse every edge of the input tree at most once in every direction, cannot define all regular languages. We then extend this result to a class …

Discrete mathematicsConjectureRegular languageComputer scienceDeterministic automatonFormal languageTransitive closureTree (set theory)Query languageMonad (functional programming)Path expressionFirst-order logicAutomaton
researchProduct

Unary Languages Recognized by Two-Way One-Counter Automata

2014

A two-way deterministic finite state automaton with one counter (2D1CA) is a fundamental computational model that has been examined in many different aspects since sixties, but we know little about its power in the case of unary languages. Up to our knowledge, the only known unary nonregular languages recognized by 2D1CAs are those formed by strings having exponential length, where the exponents form some trivial unary regular language. In this paper, we present some non-trivial subsets of these languages. By using the input head as a second counter, we present simulations of two-way deterministic finite automata with linearly bounded counters and linear–space Turing machines. We also show …

Discrete mathematicsCounter machineTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFinite-state machineTheoretical computer scienceUnary operationAbstract family of languagesTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonUnary languageUnary functionComputer Science::Formal Languages and Automata TheoryMathematicsSparse language
researchProduct

Regular Varieties of Automata and Coequations

2015

In this paper we use a duality result between equations and coequations for automata, proved by Ballester-Bolinches, Cosme-Ll´opez, and Rutten to characterize nonempty classes of deterministic automata that are closed under products, subautomata, homomorphic images, and sums. One characterization is as classes of automata defined by regular equations and the second one is as classes of automata satisfying sets of coequations called varieties of languages. We show how our results are related to Birkhoff’s theorem for regular varieties.

Discrete mathematicsData ScienceDuality (mathematics)Homomorphic encryptionCharacterization (mathematics)Nonlinear Sciences::Cellular Automata and Lattice GasesAutomatonDeterministic automatonComputingMethodologies_DOCUMENTANDTEXTPROCESSINGQuantum finite automataLecture Notes in Computer ScienceÀlgebraAlgebra over a fieldComputer Science::Formal Languages and Automata TheoryAutomatitzacióMathematics
researchProduct