Search results for "THIN-FILM"

showing 10 items of 66 documents

Photovoltaic module characteristics from CIGS solar cell modelling

2013

We describe our approach to the task of modelling, both at single cell structure and complete module levels, during the solar cell technology development process. This can give very helpful indications, in terms of global photovoltaic module characteristics, for the assessment of intermediate research results and planning of further experiments. We make reference specifically to the fabrication of thin film CIGS solar cells by means of single-step electrodeposition, a technique which appears fairly easy and low-cost but, at the same time, can lead to quite different structural and electrical properties.

Photonic structuresMaterials sciencebusiness.industryCIGS solar cellPhotovoltaic systemSettore ING-INF/02 - Campi ElettromagneticiHybrid solar cellSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciQuantum dot solar cellSettore ING-INF/01 - ElettronicaCopper indium gallium selenide solar cellsEngineering physicsModellingPolymer solar celllaw.inventionPhotovoltaic thermal hybrid solar collectorSolar energyPhotovoltaic modulelawSolar cellOptoelectronicsSolar simulatorThin-film solar cellbusinessSimulation2013 International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

2014

The authors acknowledge Francesco Ruffino for the AFM measurements. This work was funded by the EU FP7 Marie Curie Action FP7-PEOPLE-2010-ITN through the PROPHET project (Grant No. 264687), the bilateral CNR/AVCR project "Photoresponse of nanostructures for advanced photovoltaic applications", the MIUR project Energetic (Grant no. PON02_00355_3391233) and by the Portuguese Science Foundation (FCT-MEC) through the Strategic Project PEst-C/CTM/LA0025/2013-14 and the research project PTDC/CTM-ENE/2514/2012. Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhance…

SiliconMaterials scienceConformal growthSiliconchemistry.chemical_elementPlasmon02 engineering and technologyFILMS01 natural sciences7. Clean energySilver A-Si:H solar cellSettore ING-INF/01 - ElettronicaLight scatteringOptics0103 physical sciencesPhotocurrentFabrication parameterPlasmonic solar cellThin filmSILICONPhotocurrent enhancementPlasmon010302 applied physicsPhotocurrentbusiness.industryLight scattering021001 nanoscience & nanotechnologySolar energyScattering effectAtomic and Molecular Physics and OpticschemistryDiffuse reflectionOptoelectronicsDiffuse reflectionThin-film silicon solar cells Silicon solar cells0210 nano-technologybusinessSilver nanoparticle (NPs)Optics Express
researchProduct

Empowering Photovoltaics with Smart Light Management Technologies

2021

The daily Sun supplies the continents of the Earth with four times more energy than humanity consumes in a year. This enormous potential of solar energy to generate clean energy is therefore driving great efforts to replace conventional and unsustainable fossil fuel consumption that damages our climate and our environment. Solar photovoltaic (PV) is emerging as the fastest growing renewable energy technology in the world, yet its share to the electricity production currently is less than 3%. While coal and gas remain key to electricity production, the climate crisis demands a fast transition to a carbon-neutral energy system. In the year 2019, the PV industry produced solar panels with a ca…

Solar energyLight-trappingFlexible PVDielectric structureTandem solar cellsDiffractive structureThin-film PVPhotovoltaicPlasmonic
researchProduct

Ultrathin Films of 2D Hofmann-Type Coordination Polymers: Influence of Pillaring Linkers on Structural Flexibility and Vertical Charge Transport

2019

Searching for novel materials and controlling their nanostructuration into electronic devices is a challenging task ahead of chemists and chemical engineers. Even more so when this new application requires an exquisite control over the morphology, crystallinity, roughness and orientation of the films produced. In this context, it is of critical importance to analyze the influence of the chemical composition of perspective materials on their properties at the nanoscale. We report the fabrication of ultrathin films (thickness < 30 nm) of a family of FeII Hofmann-like coordination polymers by using an optimized liquid phase epitaxy (LPE) set-up. The series [Fe(L)2{Pt(CN)4}] (L = pyridine, pyri…

TechnologyMaterials scienceGeneral Chemical EngineeringMaterials ScienceQuímica organometàl·licaMaterials Science MultidisciplinaryNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesTask (project management)METAL-ORGANIC FRAMEWORKSTHIN-FILMSNANOPARTICLESMaterials ChemistryElectronicsMOLECULAR WIRESLIQUID-METALchemistry.chemical_classificationFlexibility (engineering)Science & TechnologyCONDUCTANCEChemistry PhysicalSPIN-CROSSOVERCharge (physics)General ChemistryPolymerNANOSHEETS021001 nanoscience & nanotechnology0104 chemical sciencesChemistrychemistryLAYERPhysical SciencesMaterials nanoestructurats0210 nano-technologyTRANSITIONChemistry of Materials
researchProduct

Effect of DNA Aptamer Concentration on the Conductivity of a Water-Gated Al:ZnO Thin-Film Transistor-Based Biosensor

2022

This research was supported by State Education Development Agency, Project No. 1.1.1.2/ 16/I/001, Research Proposal No. 1.1.1.2/VIAA/4/20/590 “Portable diagnostic device based on a biosensor array of 2D material sensing elements”.

Transistors ElectronicWaterzinc oxide:NATURAL SCIENCES::Physics [Research Subject Categories]thin-film transistorBiosensing TechniquesDNAAptamers NucleotidebiosensorBiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryelectrochemistryZinc OxideElectrical and Electronic EngineeringInstrumentationSensors
researchProduct

ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that will operate at 100 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be m…

X-ray detectorCryostatCosmic VisionPhotonComputer scienceShieldsCondensed Matter Physicmicrocalorimeter01 natural sciences7. Clean energySettore FIS/05 - Astronomia E AstrofisicaX-ray Integral Field Unit (X-IFU)0103 physical sciencesthermal thin-film filterElectrical and Electronic EngineeringAerospace engineering010306 general physics010303 astronomy & astrophysicsbusiness.industryElectronic Optical and Magnetic MaterialDetectorAstrophysics::Instrumentation and Methods for AstrophysicsShot noiseComputer Science Applications1707 Computer Vision and Pattern RecognitionTransition Edge SensorApplied MathematicATHENA X-ray observatoryRadio frequencyTransition edge sensorbusinessSpace Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
researchProduct

Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode

2017

International audience; The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoel…

[SPI.OTHER]Engineering Sciences [physics]/Otherab-initiopotentiometric phInorganic chemistryAnalytical chemistryl-alaninechemistry.chemical_elementInfrared spectroscopy02 engineering and technology010402 general chemistry01 natural sciencesDFTpolyanilinechemistry.chemical_compoundX-ray photoelectron spectroscopyGeneral Materials ScienceSpectroscopyl-serinepH sensingElectropolymerizationQuartz crystal microbalance[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesthin-filmchemistryadsorptionZwitterionAttenuated total reflection[ CHIM.MATE ] Chemical Sciences/Material chemistryThin polymer filmElectrodel-lysinepeptidesgold electrodeCyclic voltammetryPolar amino acid0210 nano-technologyPlatinum
researchProduct

Composite membranes of aromatic-polyamide for desalination: Membrane preparation and characterization.

1987

A new reverse osmosis composite membrane composed of the following aromatic polymer was estudied. Composite membranes were successfully prepared from PTDS by the conventional phase-inversion method. A typical example of the basic membrane performances is as follows; water flux, 440 1/m2 day and salt rejection, 97.7% determined under the pressure of 40 atm., using 0.1% NaCl solution at 25 °C. The PTDS membrane was characterized by its excellent chemical and thermal resistances, especially against acid, alkali and oxidative atmospheres. These features suggest that the PTDS membrane is a promising candidate for water desalination.

chemistry.chemical_classificationCondensation polymerMechanical EngineeringGeneral Chemical EngineeringGeneral ChemistryPolymerDesalinationAramidMembranechemistryChemical engineeringThin-film composite membranePolymer chemistryGeneral Materials ScienceWater treatmentReverse osmosisWater Science and TechnologyDesalination
researchProduct

Humidity-enhanced sub-ppm sensitivity to ammonia of covalently functionalized single-wall carbon nanotube bundle layers

2017

International audience; A low-cost method for carbon nanotubes (CNTs) network production from solutions on flexible polyethylene naphthalate substrates has been adopted to prepare high quality and well characterized SWCNT bundle layers to be used as the active layer in chemiresistor gas sensors. Two types of SWCNTs have been tested: pristine SWCNTs, deposited from a surfactant solution, and covalently functionalized SWCNTs, deposited from a dimethyl-acetamide solution. The humidity effects on the sensitivity of the SWCNTs network to NH3 have been investigated. The results show that relative humidity favors the response to NH3, confirming recent theoretical predictions. The COOH-functionaliz…

gas sensingbiasNanoparticle02 engineering and technology01 natural sciencesammoniapolyanilinelaw.inventionchemistry.chemical_compoundAmmonia; breath analysis; carbon nanotubes; environment; gas sensing; humidity; sub-ppmlawPolyanilineGeneral Materials Sciencebreath analysisChemistry (all)[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologytransductionwirelessMechanics of MaterialsMaterials Science (all)0210 nano-technologyenvironmentMaterials sciencemechanismBioengineeringCarbon nanotubesensor array010402 general chemistrySettore FIS/03 - Fisica della MateriaAdsorptionsub-ppmRelative humidityElectrical and Electronic EngineeringThin filmPolyethylene naphthalateChemiresistorcarbon nanotubesMechanical EngineeringAmmonia; breath analysis; carbon nanotubes; environment; gas sensing; humidity; sub-ppm; Bioengineering; Chemistry (all); Materials Science (all); Mechanics of Materials; Mechanical Engineering; Electrical and Electronic EngineeringhumidityGeneral ChemistrySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)0104 chemical sciencesChemical engineeringchemistryadsorptionthin-films[ CHIM.MATE ] Chemical Sciences/Material chemistrynanoparticlesnh3 gas sensitivity
researchProduct

Quantum Mechanical Co-Adsorption Modelling of Real Electrically Controlled Semiconductor Gas Sensors

2009

Abstract Co-adsorption of several gases is still a challenge due to the variety of reaction paths at the sensitive surface, and their competition for the adsorption sites. With an extended Wolkenstein model and the gas kinetic theory, we find that for specific paths their sequence of exposition has an important influence on the layer resistance as well as on the time required to achieve equilibrium. Whilst only processes that involve charge transfer can be electrically detected, a good correlation between model and electrical measurements needs weakly chemisorbed (physisorbed) layers to be taken in account. Our study presents a SnO2 nano-film sensor with electrical control electrodes expose…

gas-sensorMaterials scienceChemistry(all)business.industryTin dioxideAnalytical chemistryField effectGeneral MedicineCharacterization (materials science)chemistry.chemical_compoundAdsorptionSemiconductorTin-dioxidechemistryChemical physicsElectrodeChemical Engineering(all)Electrical measurementsfield-effectbusinessQuantumnano-thin-filmCMOS-compatibleCo-adsorptionProcedia Chemistry
researchProduct