Search results for "THIN-FILMS"
showing 10 items of 27 documents
Effect of graphene substrate type on formation of Bi2Se3 nanoplates
2019
AbstractKnowledge of nucleation and further growth of Bi2Se3 nanoplates on different substrates is crucial for obtaining ultrathin nanostructures and films of this material by physical vapour deposition technique. In this work, Bi2Se3 nanoplates were deposited under the same experimental conditions on different types of graphene substrates (as-transferred and post-annealed chemical vapour deposition grown monolayer graphene, monolayer graphene grown on silicon carbide substrate). Dimensions of the nanoplates deposited on graphene substrates were compared with the dimensions of the nanoplates deposited on mechanically exfoliated mica and highly ordered pyrolytic graphite flakes used as refer…
A liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films
2020
For large-scale atomic layer deposition (ALD) of alumina, the most commonly used alkyl precursor trimethylaluminum poses safety issues due to its pyrophoric nature. In this work, the authors have investigated a liquid alkoxide, aluminum tri-sec-butoxide (ATSB), as a precursor for ALD deposition of alumina. ATSB is thermally stable and the liquid nature facilitates handling in a bubbler and potentially enables liquid injection toward upscaling. Both thermal and plasma enhanced ALD processes are investigated in a vacuum type reactor by using water, oxygen plasma, and water plasma as coreactants. All processes achieved ALD deposition at a growth rate of 1-1.4 angstrom/cycle for substrate tempe…
Microwave harmonic emission in MgB2 superconductor: Comparison with YBA2CU3O7
2006
We report results of microwave second-harmonic generation in ceramic samples of MgB2, prepared by different methods. The SH signal has been investigated as a function of the temperature and the static magnetic field. The results are discussed in the framework of models reported in the literature. We show that the peculiarities of the SH signal are related to the specific properties of the sample. A comparison with the results obtained in ceramic and crystalline YBa2Cu3O7 shows that the second-harmonic emission in MgB2 is weaker than that observed in ceramic YBa2CuO7. (c) 2006 Wiley Periodicals, Inc.
Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films† †Electronic supplementary information (ESI) available: M…
2019
Film thickness and microstructure critically affect the spin crossover transition of a 2D coordination polymer.
ZnO Nanoestructured Layers Processing with Morphology Control by Pulsed Electrodeposition
2011
The fabrication of nanostructured ZnO thin films is a critic process for a lot of applications of this semiconductor material. The final properties of this film depend fundamentally of the morphology of the sintered layer. In this paper a process is presented for the fabrication of ZnO nanostructured layers with morphology control by pulsed electrodeposition over ITO. Process optimization is achieved by pulsed electrodeposition and results are assessed after a careful characterization of both morphology and electrical properties. SEM is used for nucleation analysis on pulsed deposited samples. Optical properties like transmission spectra and Indirect Optical Band Gap are used to evaluate th…
Electrochemical Deposition Mechanism for ZnO Nanorods: Diffusion Coefficient and Growth Models
2011
Fabrication of nanostructured ZnO thin films is a critical process for many applications based on semiconductor devices. So on understanding of the electrochemical deposition mechanism is also fundamental for knowing the optimal conditions on growth of ZnO nanorods by electrodeposition. In this paper the electrochemical mechanism for ZnO nanorods formation is studied. Results are based on the evolution of the diffusion coefficient using the Cotrell equation, and different growth models proposed by Scharifcker and Hills for nucleation and growth.
Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy
2012
International audience; A combined experimental and theoretical study is reported on the vibrational properties of tenorite CuO and paramelaconite Cu4O3. The optically active modes have been measured by Raman scattering and infrared absorption spectroscopy. First-principles calculations have been carried out with the LDA+U approach to account for strong electron correlation in the copper oxides. The vibrational properties have been computed ab initio using the so-called direct method. Excellent agreement is found between the measured Raman and infrared peak positions and the calculated phonon frequencies at the Brillouin zone center, which allows the assignment of all prominent peaks of the…
Ionic and Free Solvent Motion in Poly(azure A) Studied by ac-Electrogravimetry
2011
International audience; This work is focused on the mechanistic aspects of the redox behavior of poly(azure A) taking advantage of the controlled modulation of their oxidation states by ac-electrogravimetry. The originality of this technique is its ability to discriminate between cation and anion involved in the charge compensation process and the accompanying free solvent transfer, directly or indirectly. Two processes were proposed where the faster ionic exchange is considered to be the participation of the anion species acting as counterions whereas the slower one is related to the proton transfer. The proton is implied as reactants for the two electroactive sites identified in the polym…
Prussian Blue Analogues of Reduced Dimensionality
2012
Abstract: Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is …
Bias and humidity effects on the ammonia sensing of perylene derivative/lutetium bisphthalocyanine MSDI heterojunctions
2016
International audience; In this paper, we prepared and studied sensors based on Molecular Semiconductor-Doped Insulator (MSDI) heterojunctions. These original devices are built with two stacked layers of molecular materials and exhibit very specific electrical and sensing properties. We studied the properties of a MSDI composed of the perylenetetracarboxylic dianhydride, PTCDA, or the fluorinated perylenebisimine derivative, C4F7-PTCDI, as n-type molecular material sublayers, and LuPc2 as a p-type semiconductor top layer. Their response to ammonia was compared to that of a resistor formed of only the top layer of the MSDI (LuPc2). Ammonia increases the current in the MSDIs whereas it causes…