Search results for "TIME SERIES"
showing 10 items of 247 documents
Forecasting : theory and practice
2022
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a varie…
Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes
2017
Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by prevalently redundant or sy…
Multiscale analysis of information dynamics for linear multivariate processes.
2016
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving aver…
Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R
2019
Sequence analysis is being more and more widely used for the analysis of social sequences and other multivariate categorical time series data. However, it is often complex to describe, visualize, and compare large sequence data, especially when there are multiple parallel sequences per subject. Hidden (latent) Markov models (HMMs) are able to detect underlying latent structures and they can be used in various longitudinal settings: to account for measurement error, to detect unobservable states, or to compress information across several types of observations. Extending to mixture hidden Markov models (MHMMs) allows clustering data into homogeneous subsets, with or without external covariate…
KFAS : Exponential Family State Space Models in R
2017
State space modelling is an efficient and flexible method for statistical inference of a broad class of time series and other data. This paper describes an R package KFAS for state space modelling with the observations from an exponential family, namely Gaussian, Poisson, binomial, negative binomial and gamma distributions. After introducing the basic theory behind Gaussian and non-Gaussian state space models, an illustrative example of Poisson time series forecasting is provided. Finally, a comparison to alternative R packages suitable for non-Gaussian time series modelling is presented.
Synergetic and redundant information flow detected by unnormalized Granger causality: application to resting state fMRI
2015
Objectives: We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. Methods: The presence of redundancy and/or synergy in multivariate time series data renders difficult to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently we introduce a pairwise index of synergy which is zero when two in…
Multiscale partial information decomposition of dynamic processes with short and long-range correlations: theory and application to cardiovascular co…
2022
Abstract Objective. In this work, an analytical framework for the multiscale analysis of multivariate Gaussian processes is presented, whereby the computation of Partial Information Decomposition measures is achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations. Approach. We consider physiological time series mapping the activity of the cardiac, vascular and respiratory systems in the field of Network Physiology. In this context, the multiscale representation of transfer entropy within the network of interactions among Systolic arterial pressure (S), respiration (R) and heart period (H), as well as the decomposition into unique, redundant and s…
Using the Scaling Analysis to Characterize Financial Markets
2003
We empirically analyze the scaling properties of daily Foreign Exchange rates, Stock Market indices and Bond futures across different financial markets. We study the scaling behaviour of the time series by using a generalized Hurst exponent approach. We verify the robustness of this approach and we compare the results with the scaling properties in the frequency-domain. We find evidence of deviations from the pure Brownian motion behavior. We show that these deviations are associated with characteristics of the specific markets and they can be, therefore, used to distinguish the different degrees of development of the markets.
Factorial graphical models for dynamic networks
2015
AbstractDynamic network models describe many important scientific processes, from cell biology and epidemiology to sociology and finance. Estimating dynamic networks from noisy time series data is a difficult task since the number of components involved in the system is very large. As a result, the number of parameters to be estimated is typically larger than the number of observations. However, a characteristic of many real life networks is that they are sparse. For example, the molecular structure of genes make interactions with other components a highly-structured and, therefore, a sparse process. Until now, the literature has focused on static networks, which lack specific temporal inte…
A critical view on temperature modelling for application in weather derivatives markets
2012
Author's version of an article published in the journal: Energy Economics. Also available from the publisher at: http://dx.doi.org/10.1016/j.eneco.2011.09.012 In this paper we present a stochastic model for daily average temperature. The model contains seasonality, a low-order autoregressive component and a variance describing the heteroskedastic residuals. The model is estimated on daily average temperature records from Stockholm (Sweden). By comparing the proposed model with the popular model of Campbell and Diebold (2005), we point out some important issues to be addressed when modelling the temperature for application in weather derivatives market.