Search results for "TIVA"
showing 10 items of 12824 documents
RNA-Seq analysis to investigate alternate bearing mechanism in Pistacia vera L
2018
Pistachio (Pistacia vera L.) production suffers a high level of alternate bearing. The mechanism underlying this negative phenomenon is different from other species, such as apple and olive. Pistachio produces a high number of inflorescence buds every year that in heavy cropping trees (“ON”) mostly fall during the kernel development phase, which occurs in July-August. Primary metabolites (i.e., carbohydrates) play a key role in the signaling related to inflorescence bud abscission. In this work, RNA-Seq was used as a tool to investigate transcriptome of inflorescence buds and fruits, sampled from branches with low (“OFF”) and high (“ON”) crop load. Reference based RNA-Seq analysis using Ara…
The priming fingerprint on the plant transcriptome investigated through meta-analysis of RNA-Seq data
2020
Plants may enter into a state of alert that allows them to deploy defensive measures in a more effective way upon stress occurrence. This phenomenon is termed defense priming, and it is started in plants with a still enigmatic priming phase in which complex molecular and physiological changes occur. During the priming phase the plant transcriptome is deeply affected, but it remains largely unclear the extent of the transcriptional changes that contribute to prime the plant. In this study, we performed a meta-analysis of publicly available RNA-Seq data obtained during different priming conditions and in different plant species in order to investigate the existence of a transcriptional "primi…
Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat
2017
Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…
Impact of Bacterial Siderophores on Iron Status and Ionome in Pea
2020
National audience; Including more grain legumes in cropping systems is important for the development of agroecological practices and the diversification of protein sources for human and animal consumption. Grain legume yield and quality is impacted by abiotic stresses resulting from fluctuating availabilities in essential nutrients such as iron deficiency chlorosis (IDC). Promoting plant iron nutrition could mitigate IDC that currently impedes legume cultivation in calcareous soils, and increase the iron content of legume seeds and its bioavailability. There is growing evidence that plant microbiota contribute to plant iron nutrition and might account for variations in the sensitivity of pe…
Autotetraploid Emergence via Somatic Embryogenesis in Vitis vinifera Induces Marked Morphological Changes in Shoots, Mature Leaves, and Stomata
2021
Polyploidy plays an important role in plant adaptation to biotic and abiotic stresses. Alterations of the ploidy in grapevine plants regenerated via somatic embryogenesis (SE) may provide a source of genetic variability useful for the improvement of agronomic characteristics of crops. In the grapevine, the SE induction process may cause ploidy changes without alterations in DNA profile. In the present research, tetraploid plants were observed for 9.3% of ‘Frappato’ grapevine somatic embryos regenerated in medium supplemented with the growth regulators β-naphthoxyacetic acid (10 µM) and N6-benzylaminopurine (4.4 µM). Autotetraploid plants regenerated via SE without detectable changes in the …
Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions
2021
Crassulacean acid metabolism (CAM) crops are important agricultural commodities in water-limited environments across the globe, yet modeling of CAM productivity lacks the sophistication of widely used C3 and C4 crop models, in part due to the complex responses of the CAM cycle to environmental conditions. This work builds on recent advances in CAM modeling to provide a framework for estimating CAM biomass yield and water use efficiency from basic principles. These advances, which integrate the CAM circadian rhythm with established models of carbon fixation, stomatal conductance, and the soil-plant-atmosphere continuum, are coupled to models of light attenuation, plant respiration, and bioma…
In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase
2020
The in vitro rooting of three caper (Capparis spinosa L.) selected biotypes, grown in a commercial orchard on the Sicilian island of Salina (38°
Assessment of genetically modified cotton GHB614 × LLCotton25 × MON 15985 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFS…
2018
The three-event stack cotton GHB614 x LLCotton25 x MON 15985 was produced by conventional crossing to combine three single cotton events, GHB614, LLCotton25 and MON 15985. The EFSA GMO Panel previously assessed the three single events and did not identify safety concerns. No new data on the single events that could lead to modification of the original conclusions on their safety were identified. Based on the molecular, agronomic, phenotypic and compositional characteristics, the combination of the single events and of the newly expressed proteins in the three-event stack cotton did not give rise to food and feed safety or nutritional issues. Food and feed derived from cotton GHB614 x LLCott…
Assessment of genetically modified maize MON 87403 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFS…
2018
GMO; maize (Zea mays); MON 87403; ear biomass; Regulation (EC) No 1829/2003; International audience; aize MON 87403 was developed to increase ear biomass at early reproductive phase through the expression of a modified AtHB17 gene from Arabidopsis thaliana, encoding a plant transcription factor of the HD-Zip II family. The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety. No statistically significant differences in the agronomic and phenotypic characteristics tested between maize MON 87403 and its conventional counterpart were identified. The compositional analysis of maize MON 87403 did not identify differences…
Survey of five major grapevine viruses infecting Blatina and Žilavka cultivars in Bosnia and Herzegovina
2021
The sanitary status of grapevines has not yet been considered sufficiently in vineyards throughout Bosnia and Herzegovina (BiH). An extensive survey of five major grapevine viruses in the country was carried out in 2019. A total of 630 samples from the two dominant autochthonous cultivars, named Žilavka and Blatina, were tested by DAS-ELISA for the presence of grapevine leafroll-associated viruses (GLRaV-1 and 3), grapevine fleck virus (GFkV), grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV). Eighty-eight % of the samples were positive for at least one virus, and all five viruses were detected, thought with different incidence, i.e. GLRaV-3 (84%), GFLV (43%), GLRaV-1 (14%), GFk…