Search results for "TK9001-9401"

showing 10 items of 10 documents

Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility

2021

Abstract Selective Production of Exotic Species is an innovative plant for advanced nuclear physic studies. A radioactive beam, generated by using an UCx target-ion source system, is ionized, selected and accelerated for experimental objects. Very high vacuum conditions and appropriate safety systems to storage exhaust gases are required to avoid radiological risk for operators and people. In this paper, Failure Mode, Effects, and Criticality Analysis of a preliminary design of high activity gas recovery system is performed by using a modified Fuzzy Risk Priority Number to rank the most critical components in terms of failures and human errors. Comparisons between fuzzy approach and classic…

Computer scienceSPES FMECA Fuzzy Risk Priority Number evidence theory exhaust gas storage system020209 energySystem safety02 engineering and technologyFuzzy logicFuzzy risk priority numberPriority Number030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicine0202 electrical engineering electronic engineering information engineeringSettore ING-IND/19 - Impianti NucleariRank (computer programming)TK9001-9401SPESExhaust gas storage systemReliability engineeringEvidence theoryFailure mode effects and criticality analysisNuclear Energy and EngineeringNuclear engineering. Atomic powerRisk assessmentFailure mode and effects analysisRadioactive gasFMECANuclear Engineering and Technology
researchProduct

Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

2019

In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two campaigns of ITER-Like-Wall (ILW) in 2011-2012 (ILW1) and 2013-2014 (ILW2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma-facing-surfaces of the beryllium sampl…

Fuel retentionPhysics::Medical Physics01 natural sciencesQuantitative Biology::Cell Behavior010305 fluids & plasmasiter-like walljoint european torusRETENTION010302 applied physicsJet (fluid)tritiumPhysicsMechanicsSurface (topology)Fusion Plasma and Space Physicslcsh:TK9001-9401surgical procedures operativecardiovascular systemJoint European TorusTritiumBerylliumBerylliumNuclear and High Energy PhysicsretentionTechnology and Engineeringanimal structuresMaterials scienceQuantitative Biology::Tissues and OrgansMaterials Science (miscellaneous)Joint European Toruschemistry.chemical_elementTritium114 Physical sciencesGeneral Relativity and Quantum CosmologyFusion plasma och rymdfysik0103 physical sciencesddc:530ITER-LIKE-WALLITER-like walltechnology industry and agriculturePlasmaiter-like-wallberylliumTRANSPORTfuel retentionbody regionsNuclear Energy and Engineeringchemistrytransportlcsh:Nuclear engineering. Atomic power
researchProduct

Investigation of hydrogen and deuterium impact on the release of tritium from two-phase lithium ceramics under reactor irradiation

2022

In the development of fusion energy, an important task is the study and improvement of tritium production technologies. In this case, one of the most promising materials for tritium generation is lithium ceramics. Considering the importance of the task, numerous studies are aimed at solving the problem of determining the parameters and mechanisms of tritium release in lithium-containing materials. This paper presents the results of a study of tritium release processes from two-phase lithium ceramics of Li$_{4}$SiO$_{4}$/Li$_{2}$TiO$_{3}$ during reactor irradiation when hydrogen and deuterium are injected into the chamber with irradiated samples. The mechanisms regularities of the tritium yi…

Neutron irradiationTechnologyTritium releaseNuclear and High Energy PhysicsNuclear Energy and EngineeringMaterials Science (miscellaneous)TK9001-9401Nuclear engineering. Atomic powerTritiumDeuteriumddc:600Two-phase lithium ceramicNuclear Materials and Energy
researchProduct

Tritium retention in plasma facing materials of JET ITER-Like-Wall retrieved from the vacuum vessel in 2012 (ILW1), 2014 (ILW2) and 2016 (ILW3)

2021

Abstract ITER-Like-Wall (ILW) project has been carried out at Joint European Torus (JET) to test plasma facing materials relevant to International Thermonuclear Experimental Reactor – ITER [1]. Limiters and an upper dump plate of the vacuum vessel are made of bulk beryllium tiles, whereas for the divertor bulk tungsten and tungsten-coated carbon fibre (CFC) composite tiles are used. During the shutdowns in ILW1 (2012), ILW2 (2014) and ILW3 (2016), selected beryllium tiles were removed from the vacuum vessel. In this study, tiles from three positions were analysed, and analysis results were compared regarding both the tile position in the vacuum vessel and differences in the exploitation con…

Nuclear and High Energy PhysicsITER-Like WallMaterials scienceThermonuclear fusionFuel retentionMaterials Science (miscellaneous)Nuclear engineeringJoint European Toruschemistry.chemical_elementTungstenTritium01 natural sciences010305 fluids & plasmas0103 physical sciences010302 applied physicsDivertorTK9001-9401Nuclear Energy and EngineeringchemistryDeuteriumvisual_artvisual_art.visual_art_mediumJoint European TorusNuclear engineering. Atomic powerTritiumTileBerylliumBerylliumNuclear Materials and Energy
researchProduct

Comparison of LIBS results on ITER-relevant samples obtained by nanosecond and picosecond lasers

2019

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Work performed under EUROfusion WP PFC.

Nuclear and High Energy PhysicsMaterials scienceMaterials Science (miscellaneous)chemistry.chemical_element01 natural sciences010305 fluids & plasmaslaw.inventionPulsed laser depositionsymbols.namesakeLIBS diagnosticslaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Temperature of laser-produced plasmaLaser-induced breakdown spectroscopyta216010302 applied physicsArgonta114Pulse durationNanosecondLaserlcsh:TK9001-9401Nuclear Energy and EngineeringchemistryStark effectPicosecondITER-relevant coatingssymbolslcsh:Nuclear engineering. Atomic powerDetection of hydrogen isotopesElemental depth profilesAtomic physicsNuclear Materials and Energy
researchProduct

ODS ferritic steels obtained from gas atomized powders through the STARS processing route: Reactive synthesis as an alternative to mechanical alloying

2018

Authors acknowledge ALBA synchrotron (Spain) for the provision of beamtime on the beam line BL22-CLAESS (Proposal 2016081797). Transmission electron microscopy observations were accomplished at Centro Nacional de Microscopía Electrónica, CNME-UCM. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Financial support from Basque Government through the ELKARTEK ACTIMAT 2016 project is also acknowledged.

Nuclear and High Energy PhysicsMaterials scienceScanning electron microscopeMaterials Science (miscellaneous)Oxidechemistry.chemical_element02 engineering and technology01 natural sciences010305 fluids & plasmasNanoclusterschemistry.chemical_compoundRadiation damageFracture toughnessX-ray photoelectron spectroscopy0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Yttria-stabilized zirconiaEngineering & allied operationsMetallurgyYttrium021001 nanoscience & nanotechnologyMicrostructurelcsh:TK9001-9401Fusion reactorsNuclear Energy and Engineeringchemistrylcsh:Nuclear engineering. Atomic powerOxide dispersion strengthened ferritic stainless steels (ODS FS)ddc:6200210 nano-technology
researchProduct

Investigation of precipitate in an austenitic ODS steel containing a carbon-rich process control agent

2018

This work has been carried out within the framework of the German Helmholtz Association and has received funding from the topic “Materials Research for the Future Energy Supply”. The work of M. Parish and Rainer Ziegler is gratefully acknowledged. Thanks are also due to the team of the chemical laboratory at the KIT for performing the chemical analysis. The help of the beamline staff at ELETTRA (project 20140052 ) synchrotron radiation facility is acknowledged. We acknowledge support by Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology.

Nuclear and High Energy PhysicsMaterials scienceYield (engineering)Materials Science (miscellaneous)Oxidechemistry.chemical_elementProcess control agent02 engineering and technology01 natural sciences010305 fluids & plasmasCarbidechemistry.chemical_compound0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Process controlAusteniteMetallurgytechnology industry and agricultureX-ray absorption spectroscopy021001 nanoscience & nanotechnologylcsh:TK9001-9401Oxide dispersion strengthened steelNuclear Energy and Engineeringchemistry8. Economic growthlcsh:Nuclear engineering. Atomic powerAustenitic steelMechanical alloying0210 nano-technologyDispersion (chemistry)CarbonTransmission electron microscopyTitaniumNuclear Materials and Energy
researchProduct

Structure, tritium depth profile and desorption from 'plasma-facing' beryllium materials of ITER-Like-Wall at JET

2017

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053 . The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Nuclear and High Energy PhysicsThermal desorption spectroscopyMaterials Science (miscellaneous)Nuclear engineeringJoint European TorusAnalytical chemistryThermal desorptionchemistry.chemical_elementFuel accumulationTritiumThermal desorption7. Clean energy01 natural sciences010305 fluids & plasmasFusion plasma och rymdfysikDesorption0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]010306 general physicsJet (fluid)ChemistryITER-like wallPlasmaITER-Like-Walllcsh:TK9001-9401Fusion Plasma and Space Physicsrespiratory tract diseasesNuclear Energy and Engineeringcardiovascular systemlcsh:Nuclear engineering. Atomic powerTritiumBerylliumDepth profileBeryllium
researchProduct

Multiphysics Optimization for First Wall Design Enhancement in Water-Cooled Breeding Blankets

2021

Abstract The commercial feasibility of the first fusion power plant generation adopting D-T plasma is strongly dependent upon the self-sustainability in terms of tritium fuelling. Within such a kind of reactor, the component selected to house the tritium breeding reactions is the breeding blanket, which is further assigned to heat power removal and radiation shielding functions. As a consequence of both its role and position, the breeding blanket is heavily exposed to both surface and volumetric heat loads and, hence, its design requires a typical multiphysics approach, from the neutronics to the thermo-mechanics. During last years, a great deal of effort has been put in the optimization of…

OptimizationNuclear and High Energy PhysicsNeutron transportBreeding blanket Complex method Multiphysics Neutronics Optimization ThermomechanicsComputer scienceMaterials Science (miscellaneous)Water cooledMultiphysicsNuclear engineeringMultiphysicsTK9001-9401Structural integrityMaximizationBlanketFusion powerComplex methodThermomechanicsNuclear Energy and EngineeringComponent (UML)NeutronicsNuclear engineering. Atomic powerBreeding blanketSettore ING-IND/19 - Impianti Nucleari
researchProduct

Erosion and screening of tungsten during inter/intra-ELM periods in the JET-ILW divertor

2020

Abstract Intra-ELM tungsten sources, which dominate the total W source, are quantified in the inner and outer divertor of JET-ILW. The amount of the sputtered W atoms for individual ELMs demonstrates a clear dependence on the ELM frequency. It decreases when the pedestal temperature is lower and, correspondingly, the ELM frequency is higher. Nevertheless, the entire gross erosion W source (the number of eroded W atoms per second due to ELMs) increases initially with ELM frequency and reaches its maximum at fELM ≈ 50–55 Hz followed by its reduction in the high frequency range. The in/out asymmetry of the intra-ELM W sources during ELMs is a critical issue and is investigated in this contribu…

PFCNuclear and High Energy PhysicsMaterials scienceMaterials Science (miscellaneous)media_common.quotation_subjectJET-ILWTungsten erosionchemistry.chemical_elementTungsten01 natural sciencesAsymmetry010305 fluids & plasmasDivertor screening of tungstenPedestal0103 physical sciencesDuct (flow)PSImedia_common010302 applied physicsDivertorlcsh:TK9001-9401Tungsten imaging spectroscopyNuclear Energy and EngineeringchemistryW Divertorlcsh:Nuclear engineering. Atomic powerAtomic physicsddc:624Nuclear Materials and Energy
researchProduct