Search results for "TR146"

showing 4 items of 4 documents

The membrane-associated MUC1 improves adhesion of salivary MUC5B on buccal cells. Application to development of an in vitro cellular model of oral ep…

2015

Objectives: The mucosal pellicle is a thin layer of salivary proteins, mostly MUC5B mucins, anchored to epithelial oral cells. This pellicle is involved in protection of oral mucosae against abrasion, pathogenic microorganisms or chemical xenobiotics. The present study aimed at studying the involvement of MUC1 in mucosal pellicle formation and more specifically in salivary MUC5B binding using a cell-based model of oral epithelium. DESIGN: MUC1 mRNAs were not detected in TR146 cells, and therefore a stable cell line named TR146/MUC1 expressing this protein was developed by transfection. TR146 and TR146/MUC1 were incubated with human saliva in order to evaluate retention of MUC5B by epithelia…

0301 basic medicineSaliva[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEpithelium0302 clinical medicineimmunocytochemistryTR146 cellsDental PellicleOral mucosa[ SDV.MHEP.CHI ] Life Sciences [q-bio]/Human health and pathology/SurgeryMUC1Microscopy ConfocalReverse Transcriptase Polymerase Chain ReactionGeneral MedicineTransfectionImmunohistochemistryMucin-5Bmedicine.anatomical_structuremucosal pelliclescanning electron microscopyImmunoblotting[SDV.MHEP.CHI]Life Sciences [q-bio]/Human health and pathology/SurgeryBiologyIn Vitro TechniquesTransfectionMicrobiologyCell Line03 medical and health sciences[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologymedicineCell AdhesionHumansSalivary Proteins and PeptidesSalivaGeneral Dentistryoral mucosaMucinMucin-1Mouth Mucosa030206 dentistryCell BiologymucinsMolecular biologyIn vitroEpithelium030104 developmental biologyOtorhinolaryngologyCell cultureMicroscopy Electron Scanning[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Understanding retention and metabolization of aroma compounds using an in vitro model of oral mucosa.

2020

International audience; The mechanism leading to aroma persistence during eating is not fully described. This study aims at better understanding the role of the oral mucosa in this phenomenon. Release of 14 volatile compounds from different chemical classes was studied after exposure to in vitro models of oral mucosa, at equilibrium by Gas-Chromatography-Flame Ionization Detection (GC-FID) and in dynamic conditions by Proton Transfer Reaction- Mass Spectrometry (PTR-MS). Measurements at equilibrium showed that mucosal hydration reduced the release of only two compounds, pentan-2-one and linalool (p < 0.05), and suggested that cells could metabolize aroma compounds from different chemical fa…

Chemical structureTR146/MUC1 cellsAcyclic MonoterpenesKinetics01 natural sciencesGas Chromatography-Mass SpectrometryAnalytical Chemistrychemistry.chemical_compoundEating0404 agricultural biotechnologyLinaloolPentanonesmedicineMoleculeHumans[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringOral mucosaaroma persistenceSalivaAromaaroma metabolismVolatile Organic Compoundsbiologyoral mucosaChemistry010401 analytical chemistryaroma retentionMouth MucosaEthyl hexanoatefood and beverages04 agricultural and veterinary sciencesGeneral Medicinebiology.organism_classification040401 food scienceIn vitro0104 chemical sciencesmedicine.anatomical_structureBiochemistrymucosal pelliclearoma releasein vitro modelOdorants[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFood ScienceFood chemistry
researchProduct

Proteomic characterization of the mucosal pellicle formed in vitro on a cellular model of oral epithelium

2020

The oral mucosal pellicle is a thin lubricating layer generated by the binding of saliva proteins on epithelial oral cells. The protein composition of this biological structure has been to date studied by targeted analyses of specific salivary proteins. In order to perform a more exhaustive proteome characterization of pellicles, we used TR146 cells expressing or not the transmembrane mucin MUC1 and generated pellicles by incubation with human saliva and washing to remove unbound proteins. A suitable method was established for the in vitro isolation of the mucosal pellicle by "shaving" it from the cells using trypsin. The extracts, the washing solutions and the saliva used to constitute the…

Proteomics0301 basic medicineSalivaTR146/MUC1 cells[SDV]Life Sciences [q-bio]BiophysicsPluncBiochemistryEpithelium03 medical and health sciencesTandem Mass SpectrometrymedicineHumansDental PellicleSalivary Proteins and PeptidesSalivaproteomicMUC1Mucosal pellicle030102 biochemistry & molecular biologyChemistryMucinTrypsinIn vitroTransmembrane proteinCellular model of oral mucosa030104 developmental biologyBiochemistryProteome[SDV.AEN]Life Sciences [q-bio]/Food and Nutritionmedicine.drugJournal of Proteomics
researchProduct

Development of a new in vitro model of oral mucosa to investigate a new hypothesis on the molecular origin of astringency

2021

Astringency is described as an oral tactile perception occurring during the consumption of tannin-rich foods. This sensation, mediated by the trigeminal nerves, participates negatively to the flavor of foods leading to the rejection of food with high astringency by the consumer. The exact molecular mechanism of its origin and the nature of the sensory receptors activated are still under debate. Up to recently, the main hypotheses involved changes in the lubrication properties of the oral cavity triggering the activation of mechanoreceptors. Recently, we have put a new hypothesis involving the mucin MUC1 forward as an explanation of the origin of astringency. MUC1 is a transmembrane mucin wi…

[SDV] Life Sciences [q-bio]flavortanninsMUC1astringencytrigeminal system[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyTR146
researchProduct