Search results for "TRAF2"

showing 5 items of 5 documents

Hematopoietic stem cell quiescence and function are controlled by the CYLD–TRAF2–p38MAPK pathway

2015

Tesio at al. identify a novel pathway controlled by the tumor suppressor and deubiquitinase cylindromatosis (CYLD), which is involved in the regulation of hematopoietic stem cell quiescence and repopulation potential.

TRAF2Tumor suppressor geneMAP Kinase Signaling SystemImmunologyRegulatorBiologyp38 Mitogen-Activated Protein KinasesArticleMicemedicineAnimalsImmunology and AllergyMice KnockoutRegulation of gene expressionNF-kappa BHematopoietic stem cellCell BiologyHematopoietic Stem CellsTNF Receptor-Associated Factor 2PhenotypeDeubiquitinating Enzyme CYLDCell biologyCysteine EndopeptidasesHaematopoiesismedicine.anatomical_structureGene Expression RegulationMutationStem cellJournal of Experimental Medicine
researchProduct

Regulation of B cell homeostasis and activation by the tumor suppressor gene CYLD

2007

B cell homeostasis is regulated by multiple signaling processes, including nuclear factor-kappaB (NF-kappaB), BAFF-, and B cell receptor signaling. Conditional disruption of genes involved in these pathways has shed light on the mechanisms governing signaling from the cell surface to the nucleus. We describe a novel mouse strain that expresses solely and excessively a naturally occurring splice variant of CYLD (CYLD(ex7/8) mice), which is a deubiquitinating enzyme that is integral to NF-kappaB signaling. This shorter CYLD protein lacks the TRAF2 and NEMO binding sites present in full-length CYLD. A dramatic expansion of mature B lymphocyte populations in all peripheral lymphoid organs occur…

TRAF2Tumor suppressor geneImmunologyCellBiologyArticleDeubiquitinating Enzyme CYLDMiceB cell homeostasismedicineAnimalsHomeostasisImmunology and AllergyB-cell activating factorEmbryonic Stem CellsSequence DeletionB-LymphocytesRELBGenetic VariationExonsArticlesFibroblastsDeubiquitinating Enzyme CYLDAlternative SplicingCysteine Endopeptidasesmedicine.anatomical_structureProtein BiosynthesisCancer researchSignal transductionSignal TransductionJournal of Experimental Medicine
researchProduct

Reduction of tumor necrosis factor-alpha (TNF-α) related nuclear factor-kappaB (NF-κB) translocation but not inhibitor kappa-B (Iκ-B)-degradation by …

2002

Degradation of inhibitor kappa-B (Ikappa-B) followed by translocation of nuclear factor-kappaB (NF-kappaB) into the nucleus and activation of gene expression is essential in tumor necrosis factor-alpha (TNF-alpha)-signaling. In order to analyze the role of Rho proteins in TNF-alpha-induced NF-kappaB-activation in human umbilical cord vein endothelial cells (HUVEC) we used Clostridium difficile toxin B-10463 (TcdB-10463) which inactivates RhoA/Rac1/Cdc42 by glucosylation and Clostridium botulinum C3-toxin which inhibits RhoA/B/C by ADP-ribosylation. Exposure of HUVEC to 10 ng/mL TcdB-10463 or 2.5 microg/mL C3-toxin inhibited TNF-alpha (100 ng/mL)-induced expression of a NF-kappaB-dependent r…

PharmacologyTRAF2RHOATumor Necrosis Factor-alphaNF-kappa BClostridium difficile toxin ABiological TransportRAC1Chromosomal translocationDNABiologyBiochemistryMolecular biologyRho kinase inhibitorbiology.proteinHumansI-kappa B ProteinsTumor necrosis factor alphaEndothelium VascularInterleukin 8rhoA GTP-Binding ProteinCells CulturedBiochemical Pharmacology
researchProduct

cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand.

2008

AbstractPeripheral blood monocytes are plastic cells that migrate to tissues and differentiate into various cell types, including macrophages, dendritic cells, and osteoclasts. We have described the migration of cellular inhibitor of apoptosis protein 1 (cIAP1), a member of the IAP family of proteins, from the nucleus to the Golgi apparatus in monocytes undergoing differentiation into macrophages. Here we show that, once in the cytoplasm, cIAP1 is involved in the degradation of the adaptor protein tumor necrosis factor receptor–associated factor 2 (TRAF2) by the proteosomal machinery. Inhibition of cIAP1 prevents the decrease in TRAF2 expression that characterizes macrophage formation. We d…

TRAF2CytoplasmCellular differentiationImmunologyCD40 LigandDown-RegulationGene ExpressionGolgi ApparatusBiologyBiochemistryMonocytesProinflammatory cytokineInhibitor of Apoptosis ProteinsPhagocytes Granulocytes and MyelopoiesisPhagocytosisMacrophageHumansRNA Small InterferingCD40U937 cellMacrophagesSignal transducing adaptor proteinCell DifferentiationCell BiologyHematologyU937 CellsTNF Receptor-Associated Factor 2Molecular biologyCell biologybiology.proteinTumor necrosis factor alphaBlood
researchProduct

Analysis of cIAP1 oncogenic properties : importance of cIAP1-TRAF2 interplay

2021

Analysis of cIAP1 oncogenic properties: cIAP1 and TRAF2 ubiquitin ligases duo in tumor growth.cIAP1 (cellular Inhibitor of APoptosis-1) is a signaling intermediate belonging to the IAP (Inhibitor of APoptosis) family. This E3 ubiquitin ligase protein shows oncogenic properties. cIAP1 expression is frequently altered in various human tumor samples and represents a marker of bad prognosis and resistance to chemotherapies. Some IAP antagonists have been synthesized. They showed promising results in preclinical study and some of them are now being tested in clinical study. Unfortunately, these molecules are poorly specific as they can neutralize several IAP family members. Moreover, the mechani…

Il-6ErkTraf2[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyNf-KbCiap1Cancer
researchProduct