Search results for "TRANSCRIPTION"
showing 10 items of 2278 documents
Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics
2013
Objectives Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Design Prospective analysis. Patients 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF . When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe …
Pathogenesis of inflammatory bowel disease: transcription factors in the spotlight.
1998
See article on page 477 Dysregulated cytokine production by mucosal lymphocytes and macrophages has been implicated in the pathogenesis of both Crohn’s disease and ulcerative colitis, the two major forms of human inflammatory bowel disease (IBD).1 Over the past few years, various murine models of chronic intestinal inflammation resembling IBD have been discovered which have provided important clues as to the nature of this dysregulation and to its possible treatment with cytokines.2 Thus, in studies of several of the models most closely resembling Crohn’s disease it has been shown that production of large amounts of Th1-type cytokines—for example, interferon γ, by T cells is a major and ess…
Canine Mesenchymal Stem Cells from visceral and subcutaneuous adipose tissue for cell-based therapy
2012
This study compared some characteristics of canine Adipose tissue-Derived Mesenchymal Stem Cells (cAD-MSCs) from subcutaneous and visceral fat. These findings were directed to obtain high quantity and quality cAD-MSCs for clinical cell-based therapy.
MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b
2016
// Giuseppina Roscigno 1, 2 , Cristina Quintavalle 1, 2 , Elvira Donnarumma 3 , Ilaria Puoti 1 , Angel Diaz-Lagares 4 , Margherita Iaboni 1 , Danilo Fiore 1 , Valentina Russo 1 , Matilde Todaro 5 , Giulia Romano 6 , Renato Thomas 7 , Giuseppina Cortino 7 , Miriam Gaggianesi 5 , Manel Esteller 4 , Carlo M. Croce 6 , Gerolama Condorelli 1, 2 1 Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy 2 IEOS-CNR, Naples, Italy 3 IRCCS-SDN, Naples, Italy 4 Epigenetic and Cancer Biology Program (PEBC) IDIBELL, Hospital Duran I Reynals, Barcelona, Spain 5 Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Lab…
TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells
2015
Metastatic growth in breast cancer (BC) has been proposed as an exclusive property of cancer stem cells (CSCs). However, formal proof of their identity as cells of origin of recurrences at distant sites and the molecular events that may contribute to tumor cell dissemination and metastasis development are yet to be elucidated. In this study, we analyzed a set of patient-derived breast cancer stem cell (BCSC) lines. We found that in vitro BCSCs exhibit a higher chemoresistance and migratory potential when compared with differentiated, nontumorigenic, breast cancer cells (dBCCs). By developing an in vivo metastatic model simulating the disease of patients with early BC, we observed that BCSCs…
STAT5b is a key effector of NRG-1/ERBB4-mediated myocardial growth
2023
The growth factor Neuregulin-1 (NRG-1) regulates myocardial growth and is currently under clinical investigation as a treatment for heart failure. Here, we demonstrate in several in vitro and in vivo models that STAT5b mediates NRG-1/EBBB4-stimulated cardiomyocyte growth. Genetic and chemical disruption of the NRG-1/ERBB4 pathway reduces STAT5b activation and transcription of STAT5b target genes Igf1, Myc, and Cdkn1a in murine cardiomyocytes. Loss of Stat5b also ablates NRG-1-induced cardiomyocyte hypertrophy. Dynamin-2 is shown to control the cell surface localization of ERBB4 and chemical inhibition of Dynamin-2 downregulates STAT5b activation and cardiomyocyte hypertrophy. In zebrafish e…
Engineering the smallest transcription factor: accelerated evolution of a 63-amino acid peptide dual activator-repressor
2019
Transcription factors control gene expression in all life. This raises the question of what is the smallest protein that can support such activity. In nature, Cro from bacteriophage λ is the smallest known repressor (66 amino acids; a.a.) but activators are typically much larger (e.g. λ cI, 237 a.a.). Indeed, previous efforts to engineer a minimal activator from Cro resulted in no activityin vivo. In this study, we show that directed evolution results in a new Cro activator-repressor that functions as efficiently as λ cI,in vivo. To achieve this, we develop Phagemid-Assisted Continuous Evolution: PACEmid. We find that a peptide as small as 63-a.a. functions efficiently as an activator and/o…
Analysis of pseudouridines and other RNA modifications using hydraPsiSeq protocol
2021
Detection of RNA modified nucleotides using deep sequencing can be performed by several approaches, including antibody-driven enrichment and natural or chemically induced RT signatures. However, only very few RNA modified nucleotides generate natural RT signatures and antibody-driven enrichment heavily depends on the quality of antibodies used and may be highly biased. Thus, the use of chemically-induced RT signatures is now considered as the most trusted experimental approach. In addition, the use of chemical reagents allows inclusion of simple "mock-treated" controls, to exclude spontaneous RT arrests, SNPs and other misincorporation-prone sites. Hydrazine is a well-known RNA-specific rea…
RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and initiates a novel mRNA decay pathway
2021
AbstractmRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the exonuclease Xrn1 - a major mRNA synthesis and decay factor. Here we show that nucleocytoplasmic shuttling of Xrn1 and of some of its associated mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Mutations in the two NLSs, which prevent Xrn1 import, compromise transcription and, unexpectedly, also the cytoplasmic decay of ∼50% of the cell…
Detection of RNA modifications
2010
RNA nucleotide modifications are typically of low abundance and frequently go unnoticed by standard detection methods of molecular biology and cell biology. With a burst of knowledge intruding from such diverse areas as genomics, structural biology, regulation of gene expression and immunology, it becomes increasingly clear that many exciting functions of nucleotide modifications remain to be explored. It follows in turn that the biology of nucleotide modification and editing is a field poised to rapidly gain importance in a variety of fields. The detection and analysis of nucleotide modifications present a clear limitation in this respect. Here, various methods for detection of nucleotide …