Search results for "TRANSCRIPTION"

showing 10 items of 2278 documents

Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor

2016

Abstract Chronic myelogenous leukaemia (CML) is a clonal myeloproliferative disorder. Recent evidence indicates that altered crosstalk between CML and mesenchymal stromal cells may affect leukaemia survival; moreover, vesicles released by both tumour and non‐tumour cells into the microenvironment provide a suitable niche for cancer cell growth and survival. We previously demonstrated that leukaemic and stromal cells establish an exosome‐mediated bidirectional crosstalk leading to the production of IL8 in stromal cells, thus sustaining the survival of CML cells. Human cell lines used are LAMA84 (CML cells), HS5 (stromal cells) and bone marrow primary stromal cells; gene expression and protei…

0301 basic medicineStromal cellchronic myeloid leukaemiaEGFRBone Marrow CellsexosomesBiologyInterleukin 8AmphiregulinBone Marrow Stromal Cell03 medical and health sciencesAmphiregulinSettore BIO/13 - Biologia Applicatahemic and lymphatic diseasesCell Line TumorLeukemia Myelogenous Chronic BCR-ABL PositivemedicineCell AdhesionHumansInterleukin 8Epidermal growth factor receptorRNA MessengerPhosphorylationRNA Small InterferingAnnexin A2SNAILMesenchymal stem cellInterleukin-8Cell BiologyOriginal ArticlesMicrovesiclesCell biologyErbB Receptors030104 developmental biologymedicine.anatomical_structureCellular MicroenvironmentMatrix Metalloproteinase 9Cancer cellChronic Myelogenous Leukemia Exosomes; Interleukin 8; Bone Marrow Stromal Cells; EGFRbiology.proteinMolecular MedicineOriginal ArticleBone marrowSnail Family Transcription FactorsChronic Myelogenous Leukemia ExosomeStromal Cellsepidermal growth factor receptor
researchProduct

Balanced Bcl-3 expression in murine CD4+T cells is required for generation of encephalitogenic Th17 cells

2017

The function of NF-κB family members is controlled by multiple mechanisms including the transcriptional regulator Bcl-3, an atypical member of the IκB family. By using a murine model of conditional Bcl-3 overexpression specifically in T cells, we observed impairment in the development of Th2, Th1 and Th17 cells. High expression of Bcl-3 promoted CD4+ T-cell survival, but at the same time suppressed proliferation in response to TCR stimulation, resulting in reduced CD4+ T-cell expansion. As a consequence, T cell specific overexpression of Bcl-3 led to reduced inflammation in the small intestine of mice applied with anti-CD3 in a model of gut inflammation. Moreover, impaired Th17-cell develop…

0301 basic medicineT cellMultiple sclerosisImmunologyT-cell receptorStimulationInflammationNF-κBBiologymedicine.diseaseSmall intestineCell biology03 medical and health scienceschemistry.chemical_compound030104 developmental biologymedicine.anatomical_structurechemistryImmunologymedicineTranscriptional regulationImmunology and Allergymedicine.symptomEuropean Journal of Immunology
researchProduct

IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively

2016

International audience; Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the identity of terminally differentiated cells are designated `' terminal selectors.'' Using BM chimeras, conditional Irf8(fl/fl) mice and various promotors to target Cre recombinase to different stages of monocyte and DC development, we have identified IRF8 as a terminal selector of the cDC1 lineage controlling survival. In monocytes, IRF8 was necessary during early but not late d…

0301 basic medicineT-LymphocytesCellular differentiationImmunologyCre recombinasePlasmacytoid dendritic cellBiologyMonocytesMice03 medical and health sciences0302 clinical medicineInterferonmedicineAnimalsImmunology and AllergyPromoter Regions GeneticMonocyteCell DifferentiationDendritic CellsDendritic cellCell biologyMice Inbred C57BL030104 developmental biologyInfectious Diseasesmedicine.anatomical_structureInterferon Regulatory FactorsInterferon Type ICancer research[SDV.IMM]Life Sciences [q-bio]/ImmunologyIRF8Transcription Factors030215 immunologyIRF4medicine.drugImmunity
researchProduct

The mRNA cap-binding protein Cbc1 is required for high and timely expression of genes by promoting the accumulation of gene-specific activators at pr…

2015

The highly conserved Saccharomyces cerevisiae cap-binding protein Cbc1/Sto1 binds mRNA co-transcriptionally and acts as a key coordinator of mRNA fate. Recently, Cbc1 has also been implicated in transcription elongation and pre-initiation complex (PIC) formation. Previously, we described Cbc1 to be required for cell growth under osmotic stress and to mediate osmostress-induced translation reprogramming. Here, we observe delayed global transcription kinetics in cbc1Δ during osmotic stress that correlates with delayed recruitment of TBP and RNA polymerase II to osmo-induced promoters. Interestingly, we detect an interaction between Cbc1 and the MAPK Hog1, which controls most gene expression c…

0301 basic medicineTBX1Saccharomyces cerevisiae ProteinsTranscription GeneticBiophysicsRNA polymerase IISaccharomyces cerevisiaeBiochemistry03 medical and health sciencesOsmotic PressureStructural BiologyTranscription (biology)Gene Expression Regulation FungalGene expressionGeneticsRNA MessengerMolecular BiologyTranscription factorTranscription Initiation GeneticbiologyActivator (genetics)Nuclear ProteinsPromoterMolecular biology030104 developmental biologyRNA Cap-Binding Proteinsbiology.proteinMitogen-Activated Protein KinasesCREB1Transcription FactorsBiochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms
researchProduct

Identification of the Tetraspanin CD9 as an Interaction Partner of Organic Cation Transporters 1 and 2

2019

Organic cation transporters (OCTs) are membrane proteins with relevant physiological (because they accept neurotransmitters as substrate) and pharmacological (because of their interaction with drugs) roles. The human OCTs hOCT1 (SLC22A1/hOCT1) and hOCT2 (SLC22A2/hOCT2) are highly expressed in hepatic (hOCT1) and in renal and neuronal tissue (hOCT2), suggesting a possible role in modulating neurotransmitter activity in the liver, kidney, and brain, and their clearance from the blood. Even though there are several data demonstrating that OCTs are regulated under various patho-physiological conditions, it remains largely unknown which proteins directly interact with OCTs and thereby influence …

0301 basic medicineTetraspaninsEndosome610BiochemistryInteractomeTetraspanin 29Madin Darby Canine Kidney CellsAnalytical Chemistry03 medical and health sciencesDogs610 Medical sciences MedicineTetraspaninAnimalsHumansCellular localizationOrganic cation transport proteins030102 biochemistry & molecular biologybiologyChemistryCell MembraneMembrane ProteinsOrganic Cation Transporter 2TransporterCompartmentalization (psychology)Cell biologyProtein TransportHEK293 Cells030104 developmental biologyMembrane proteinembryonic structuresbiology.proteinMolecular MedicineOctamer Transcription Factor-1Biotechnology
researchProduct

Transient postnatal over nutrition induces long-term alterations in cardiac NLRP3-inflammasome pathway.

2018

International audience; Background and aims: The prevalence of obesity is increasing worldwide at an alarming rate. Altered early nutrition, in particular postnatal overfeeding (PNOF), is a risk factor for impaired cardiac function in adulthood. In the understanding of the initiation or progression of heart diseases, NLRP3 inflammasome and non-coding RNAs have been proposed as key players. In this context, the aim of this study was to decipher the role of NLRP3 inflammasome and its post transcriptional control by micro-RNAs in the regulation of cardiac metabolic function induced by PNOF in mice. Methods and results: Based on a model of mice exposed to PNOF through litter size reduction, we …

0301 basic medicineTime FactorsLitter SizeInflammasomesEndocrinology Diabetes and Metabolismmedicine.medical_treatmentMedicine (miscellaneous)InflammasomeOvernutritionInsulinNutrition and Dieteticsintegumentary systembiologyInflammasomeMicro-RNAsTransfection[SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemAnimal Nutritional Physiological PhenomenaSignal transductionCardiology and Cardiovascular Medicinemedicine.drugSignal TransductionCardiac function curvemedicine.medical_specialtyHeart DiseasesCardiac dysfunctionsNutritional StatusContext (language use)Cell LineProto-Oncogene Protein c-ets-103 medical and health sciences[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemInternal medicineNLR Family Pyrin Domain-Containing 3 ProteinmedicineAnimalsPost-transcriptional regulationNutritionbusiness.industryInsulinMyocardiumRatsMice Inbred C57BLInsulin receptorDisease Models AnimalMicroRNAs030104 developmental biologyEndocrinologyAnimals Newbornbiology.proteinbusinessNutrition, metabolism, and cardiovascular diseases : NMCD
researchProduct

Induction of Chromosome Instability by Activation of Yes-Associated Protein and Forkhead Box M1 in Liver Cancer

2016

Background & Aims Many different types of cancer cells have chromosome instability. The hippo pathway leads to phosphorylation of the transcriptional activator yes-associated protein 1 (YAP1, YAP), which regulates proliferation and has been associated with the development of liver cancer. We investigated the effects of hippo signaling via YAP on chromosome stability and hepatocarcinogenesis in humans and mice. Methods We analyzed transcriptome data from 242 patients with hepatocellular carcinoma (HCC) to search for gene signatures associated with chromosomal instability (CIN); we investigated associations with overall survival time and cancer recurrence using Kaplan–Meier curves. We analyze…

0301 basic medicineTime FactorsMuscle ProteinsKaplan-Meier Estimatemedicine.disease_causeChromosome instabilityYAP1Liver NeoplasmsGastroenterologyTEA Domain Transcription FactorsHep G2 CellsPrognosisDNA-Binding ProteinsGene Expression Regulation NeoplasticPhenotypeHippo signalingRNA InterferenceSignal TransductionCarcinoma HepatocellularPorphyrinsAntineoplastic AgentsMice TransgenicBiologyTransfection03 medical and health sciencesChromosomal InstabilitymedicineAnimalsHumansGene silencingGenetic Predisposition to DiseaseAdaptor Proteins Signal TransducingHippo signaling pathwayHepatologyGene Expression ProfilingForkhead Box Protein M1VerteporfinYAP-Signaling ProteinsHCCSPhosphoproteinsThiostreptonMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyTissue Array AnalysisFOXM1Cancer researchTranscriptomeCarcinogenesisTranscription FactorsGastroenterology
researchProduct

Alternative Splice Forms of CYLD Mediate Ubiquitination of SMAD7 to Prevent TGFB Signaling and Promote Colitis

2018

Background & Aims The CYLD lysine 63 deubiquitinase gene (CYLD) encodes tumor suppressor protein that is mutated in familial cylindromatosus, and variants have been associated with Crohn disease (CD). Splice forms of CYLD that lack exons 7 and 8 regulate transcription factors and functions of immune cells. We examined the expression of splice forms of CYLD in colon tissues from patients with CD and their effects in mice. Methods We performed immunohistochemical analyses of colon tissues from patients with untreated CD and patients without inflammatory bowel diseases (controls). We obtained mice that expressed splice forms of CYLD (sCYLD mice) without or with SMAD7 (sCYLD/SMAD7 mice) from tr…

0301 basic medicineTranscription FactorBiopsyInbred C57BLTransgenicImmune RegulationSettore MED/12MiceRandom Allocation0302 clinical medicineCrohn DiseaseReference ValuesNeedleIntestinal Mucosaintegumentary systemChemistryBiopsy NeedleGastroenterologyT helper cellFlow CytometryPost-translational ModificationImmunohistochemistryDeubiquitinating Enzyme CYLDCysteine Endopeptidasesmedicine.anatomical_structure030211 gastroenterology & hepatologyTumor necrosis factor alphaSignal TransductionGenetically modified mouseRegulatory T cellTransgeneMice TransgenicSmad7 ProteinTransforming Growth Factor beta103 medical and health sciencesImmune systemmedicineAnimalsHumansCytokine SignalingHepatologyAnimalHEK 293 cellsUbiquitinationMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyDisease ModelsCytokine Signaling; Immune Regulation; Post-translational Modification; Transcription Factor; Biopsy Needle; Crohn Disease; Cysteine Endopeptidases; Deubiquitinating Enzyme CYLD; Disease Models Animal; Flow Cytometry; Immunohistochemistry; Intestinal Mucosa; Mice Inbred C57BL; Mice Transgenic; Random Allocation; Reference Values; Signal Transduction; Smad7 Protein; Transforming Growth Factor beta1; UbiquitinationTransforming growth factorGastroenterology
researchProduct

Hypoxia-Induced miR-675-5p Supports β-Catenin Nuclear Localization by Regulating GSK3-β  Activity in Colorectal Cancer Cell Lines

2020

The reduction of oxygen partial pressure in growing tumors triggers numerous survival strategies driven by the transcription factor complex HIF1 (Hypoxia Inducible Factor-1). Recent evidence revealed that HIF1 promotes rapid and effective phenotypic changes through the induction of non-coding RNAs, whose contribution has not yet been fully described. Here we investigated the role of the hypoxia-induced, long non-coding RNA H19 (lncH19) and its intragenic miRNA (miR-675-5p) into HIF1-Wnt crosstalk. During hypoxic stimulation, colorectal cancer cell lines up-regulated the levels of both the lncH19 and its intragenic miR-675-5p. Loss of expression experiments revealed that miR-675-5p inhibitio…

0301 basic medicineTranscription factor complexKaplan-Meier Estimatelcsh:Chemistry0302 clinical medicineGSK-3poxiahylcsh:QH301-705.5long non-coding H19Spectroscopybeta CateninKinaseChemistryGeneral MedicineCell HypoxiaComputer Science ApplicationsCell biologyGene Expression Regulation Neoplastic030220 oncology & carcinogenesisColorectal NeoplasmsProtein BindingActive Transport Cell Nucleuscolorectal cancermiR-675TransfectionCatalysisArticleInorganic Chemistry03 medical and health sciencesCell Line TumormicroRNAGene silencingHumansPhysical and Theoretical ChemistryMolecular BiologyGlycogen Synthase Kinase 3 betahypoxiaOrganic ChemistryRNAComputational Biologyβ-cateninHCT116 CellsMicroRNAs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Microscopy FluorescenceCateninMutationNuclear localization sequenceInternational Journal of Molecular Sciences
researchProduct

Iwr1 facilitates RNA polymerase II dynamics during transcription elongation.

2017

Iwr1 is an RNA polymerase II (RNPII) interacting protein that directs nuclear import of the enzyme which has been previously assembled in the cytoplasm. Here we present genetic and molecular evidence that links Iwr1 with transcription. Our results indicate that Iwr1 interacts with RNPII during elongation and is involved in the disassembly of the enzyme from chromatin. This function is especially important in resolving problems posed by damage-arrested RNPII, as shown by the sensitivity of iwr1 mutants to genotoxic drugs and the Iwr1's genetic interactions with RNPII degradation pathway mutants. Moreover, absence of Iwr1 causes genome instability that is enhanced by defects in the DNA repair…

0301 basic medicineTranscription factoriesCytoplasmSaccharomyces cerevisiae ProteinsDNA RepairTranscription GeneticBiophysicsActive Transport Cell NucleusRNA polymerase IISaccharomyces cerevisiaeBiochemistryGenomic Instability03 medical and health sciencesStructural BiologyGeneticsMolecular BiologyRNA polymerase II holoenzymePolymeraseCell NucleusbiologyGeneral transcription factorMolecular biologyChromatinCell biology030104 developmental biologybiology.proteinTranscription factor II FRNA Polymerase IITranscription factor II DCarrier ProteinsTranscription factor II BDNA DamageBiochimica et biophysica acta. Gene regulatory mechanisms
researchProduct