Search results for "TRANSFER"

showing 10 items of 5271 documents

GRAS, Irene; FREIXA, Mireia (coords.). "Acadèmia i art. Dinàmiques, transferències i significació a l’època moderna i contemporània"

2016

ArtículoUNESCO::HISTORIA::Historia por especialidades::Historia del arteFREIXA Mireia (coords.). &quotGRAS Irene; FREIXA Mireia (coords.). "Acadèmia i art. Dinàmiques transferències i significació a l’època moderna i contemporània" ArtículoGRAS IreneAcadèmia i art. Dinàmiques transferències i significació a l’època moderna i contemporània&quot:HISTORIA::Historia por especialidades::Historia del arte [UNESCO]
researchProduct

Quantum-state transfer in staggered coupled-cavity arrays

2015

We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of inter-cavity couplings, a pair of field normal modes each bi-localized at the two array ends arise. A rich structure of dynamical regimes can hence be addressed depending on which resonance condition between the atom and field modes is set. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic or polaritonic states. Moreover, by partitioning the array into coupled modules of smaller length, the QST time can be substantially shortened without significantly affecting the fidelity.

---PhysicsQuantum PhysicsField (physics)business.industryFOS: Physical sciencesResonanceNanotechnology01 natural sciencesMolecular physics010305 fluids & plasmasQuantum state transfer coupled-cavity arraysNormal mode0103 physical sciencesAtomQuantum state transferPhotonicsQuantum Physics (quant-ph)010306 general physicsbusinessPhysical Review A
researchProduct

Electron transport and the effect of current annealing in a two-point contacted hBN/graphene/hBN heterostructure device

2020

In this work, we fabricated a 2D van der Waals heterostructure device in an inert nitrogen atmosphere by means of a dry transfer technique in order to obtain a clean and largely impurity free stack of hexagonal boron nitride (hBN)-encapsulated few-layer graphene. The heterostructure was contacted from the top with gold leads on two sides, and the device’s properties including intrinsic charge carrier density, mobility, and contact resistance were studied as a function of temperature from 4 K to 270 K. We show that the contact resistance of the device mainly originates from the metal/graphene interface, which contributes a significant part to the total resistance. We demonstrate that current…

010302 applied physicsElectron mobilityMaterials scienceGraphenebusiness.industryAnnealing (metallurgy)Contact resistanceGeneral Physics and AstronomyHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionsymbols.namesakeImpuritylaw0103 physical sciencessymbolsOptoelectronicsDry transfervan der Waals force0210 nano-technologybusinessJournal of Applied Physics
researchProduct

Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers

2016

Abstract The self-sustained propagating reaction occurring in nanometric metallic multilayers was studied by means of molecular dynamics (MD) and numerical modeling. We focused on the phenomenon of the exothermic dissolution of one metallic reactant into the less refractory one, such as Ni into liquid Al. The exothermic character is directly related to a negative enthalpy of mixing. An analytical model based on the diffusion-limited dissolution [1] coupled with heat transfer was derived to account for the main aspects of the process. Together, several microscopic simulations were carried out. The first series were set up to obtain all the parameters governing the process, including the heat…

010302 applied physicsExothermic reactionMaterials sciencePolymers and PlasticsMetals and AlloysThermodynamics02 engineering and technology021001 nanoscience & nanotechnologyEnthalpy of mixing01 natural sciencesElectronic Optical and Magnetic MaterialsMetalMolecular dynamicsCrystallographyScientific methodvisual_art0103 physical sciencesHeat transferCeramics and Compositesvisual_art.visual_art_mediumDiffusion (business)0210 nano-technologyDissolutionActa Materialia
researchProduct

Stability of melt flow during magnetic sonication in a floating zone configuration

2018

Combined static and alternating magnetic fields are shown to create an oscillating pressure that can cause cavitation in molten metals. A time-averaged flow is also excited, consisting of two tori squeezed to thin boundary layers. Flow instability develops as a standing wave between these tori.

010302 applied physicsFluid Flow and Transfer ProcessesMaterials scienceFlow (psychology)Computational MechanicsBoundary (topology)Torus02 engineering and technologyMechanics021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldPhysics::Fluid DynamicsStanding waveModeling and SimulationExcited stateCavitation0103 physical sciences0210 nano-technologyMelt flow indexPhysical Review Fluids
researchProduct

Multiple low-frequency broad band gaps generated by a phononic crystal of periodic circular cavity sandwich plates

2017

Abstract We propose a new type of phononic crystal (PnC) composed of a periodic alternation of circular cavity sandwich plates. In the low-frequency regime, the crystal can modulate the propagation of flexural waves. Governing equations are deduced basing on the classical theory of coupled extensional and flexural vibrations of plates. The dispersion relation of the infinite PnC is calculated by combining the transfer matrix method with Bloch theory. The dynamic response of the PnC with finite unit cells is further studied with finite element analysis. An experiment is carried out to demonstrate the performance of the PnC in vibration isolation. Numerical results and experimental results bo…

010302 applied physicsMaterials scienceBand gapbusiness.industryAttenuationTransfer-matrix method (optics)02 engineering and technologyStructural engineeringLow frequency021001 nanoscience & nanotechnology01 natural sciencesFinite element methodComputational physicsCrystalVibration isolationDispersion relation0103 physical sciencesCeramics and Composites0210 nano-technologybusinessCivil and Structural EngineeringComposite Structures
researchProduct

Tetragonal Heusler Compounds for Spintronics

2013

With respect to the requirements of spin torque transfer (STT) materials, one the most promising materials families are the tunable tetragonal Heusler compounds based on Mn2YZ (Y=Co,Fe,Ni,Rh,...; Z=Al, Ga, Sn). They form the inverse cubic Heusler structure with three distinct magnetic sublattices, which allows a fine tuning of the magnetic properties. Starting with the stoichiometric Mn3Ga compound, we explored the complete phase diagram of Mn3-xYxZ (Y=Co, Fe, Ni and Z=Ga ). All series exhibit thermally stable magnetic properties. As we demonstrate, Mn3-xFexGa series, which are tetragonal over the whole range of compositions, are good as hard magnets, whereas magnetically more weak Mn3-xNix…

010302 applied physicsMaterials scienceCondensed matter physicsSpintronicsSpin-transfer torque02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsTetragonal crystal systemFerromagnetismMagnet0103 physical sciencesElectrical and Electronic Engineering0210 nano-technologyStoichiometryPhase diagramIEEE Transactions on Magnetics
researchProduct

How activator ion concentration affects spectroscopic properties on Ba4Y3F17: Er3+, Yb3+, a new perspective up-conversion material

2018

Abstract Ba4Y3F17 with Er3+ and Yb3+, a promising material for up-conversion luminescence, was synthesized. Excellent isomorphic capacity was detected. Low-temperature measurements show that erbium ions are incorporated in multiple lattice positions, which is inconsistent with the current model of Ba4Y3F17 crystal lattice structure. Activator ion concentration has a different impact on 4S3/2 and 4F9/2, states (for the green and red luminescence, respectively) depopulation. Energy transfer from Er3+ 4S3/2 state to Yb3+ is observed even at low temperature (15 K) while Er-Er cross-relaxation is observed from 120 K and above. Yb3+ concentration has a great impact to red-to-green up-conversion l…

010302 applied physicsMaterials scienceEnergy transferBiophysicsAnalytical chemistryQuantum yield02 engineering and technologyGeneral ChemistryCrystal structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesBiochemistryAtomic and Molecular Physics and OpticsIonLattice (order)0103 physical sciencesActivator (phosphor)Up conversion0210 nano-technologyLuminescenceJournal of Luminescence
researchProduct

Numerical modelling for the diameter increase of silicon crystals grown with the pedestal method

2021

Abstract The pedestal method is one of crucible-free crystal growth methods, that has been less researched than the well-known floating zone (FZ) method. However, the pedestal method may be a cost-effective alternative to FZ, if large diameter feed rods are available. The investigated system contains two electromagnetic inductors: high-frequency inductor for pedestal top surface melting and middle-frequency inductor for pedestal side heating. The present work describes recent advances in numerical modelling of heat transfer and phase boundaries in axially symmetrical approximation, neglecting the melt flow. The shape of high-frequency inductor was optimized with the algorithm of gradient de…

010302 applied physicsMaterials sciencePhase (waves)Crystal growth02 engineering and technologyMechanics021001 nanoscience & nanotechnologyCondensed Matter PhysicsInductor01 natural sciencesRodlaw.inventionInorganic ChemistryCrystalPedestallaw0103 physical sciencesHeat transferMaterials ChemistryCrystallization0210 nano-technologyJournal of Crystal Growth
researchProduct

Validation of a 3D mathematical model for feed rod melting during floating zone Si crystal growth

2019

Abstract A mathematical model of global 3D heat transfer in floating zone silicon single crystal growth process is used to predict the shape of the open melting front of the feed rod. The model is validated using measurement data from research-scale growth experiments. Shape profiles of the open melting front are obtained from the feed rod leftover using a movable dial gauge. Azimuthal asymmetry of the rim of the open melting front is revealed in both simulations and measurements, quantitatively indicating the influence of the main slit of the inductor.

010302 applied physicsMaterials scienceSilicondigestive oral and skin physiologyProcess (computing)chemistry.chemical_elementCrystal growth02 engineering and technologyMechanicsGauge (firearms)021001 nanoscience & nanotechnologyCondensed Matter PhysicsInductor01 natural sciencesInorganic ChemistryDialAzimuthal asymmetrychemistry0103 physical sciencesHeat transferMaterials Chemistrysense organs0210 nano-technologyJournal of Crystal Growth
researchProduct