Search results for "TRANSITION-PROBABILITIES"

showing 2 items of 2 documents

Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

2020

Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…

Nuclear and High Energy PhysicsPenning trapAstronomy & Astrophysics01 natural sciencesIonPhysics Particles & Fieldsbeta-decay spectroscopyIsomersShell model0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear Experiment010306 general physicsSpectroscopyCouplingPhysicsScience & TechnologyNUCLEI010308 nuclear & particles physicsPhysicsPRECISION MASS-SPECTROMETRYNuclear shell modelR-PROCESSshell modelpenning trapRAMSEY METHODPenning traplcsh:QC1-999Physics NuclearExcited stateBeta (plasma physics)Physical SciencesSHELL-MODELTRANSITION-PROBABILITIESisomersAtomic physicsBeta-decay spectroscopylcsh:PhysicsIon cyclotron resonancePhysics Letters B
researchProduct

The Hamburg/ESO R-process Enhanced Star survey (HERES):XI. The highly r-process-enhanced star CS 29497-004

2017

We report an abundance analysis for the highly r-process-enhanced (r-II) star CS 29497-004, a very metal-poor giant with Teff = 5013K and [Fe/H]=-2.85, whose nature was initially discovered in the course of the HERES project. Our analysis is based on high signal-to-noise, high-resolution (R~75000) VLT/UVES spectra and MARCS model atmospheres under the assumption of local thermodynamic equilibrium, and obtains abundance measurements for a total of 46 elements, 31 of which are neutron-capture elements. As is the case for the other 25 r-II stars currently known, the heavy-element abundance pattern of CS 29497-004 well-matches a scaled Solar System second peak r-process-element abundance patter…

MODEL ATMOSPHERESSolar SystemPopulation II [stars]Thermodynamic equilibriumMETAL-POOR STARSFOS: Physical sciencesAstrophysicsStar (graph theory)01 natural sciences7. Clean energySpectral lineGalactic halochemically peculiar [stars]CORE-COLLAPSE SUPERNOVAELABORATORY TRANSITION-PROBABILITIES0103 physical sciencesEXPERIMENTAL OSCILLATOR-STRENGTHShalo [Galaxy]NeutronEARLY GALAXY010306 general physics010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSSolar and Stellar Astrophysics (astro-ph.SR)PhysicsPROCESS-RICHGALACTIC CHEMICAL EVOLUTIONAstronomy and Astrophysicsindividual: CS 29497-004 [stars][PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Astrophysics - Astrophysics of Galaxiesabundances [stars]StarsHIGH-ENTROPY-WIND[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Astrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)r-processNEUTRON-CAPTURE
researchProduct