6533b7cefe1ef96bd12571c9
RESEARCH PRODUCT
Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques
Jouni SuhonenAlison BruceJoel KostensaloA. De RoubinJuha ÄYstöM. VilenS. GeldhofDmitrii NesterenkoSami Rinta-antilaE.r. GambaO. BeliuskinaV. VirtanenM. RudigierAri JokinenC. R. NobsIain MooreAnu KankainenJ. KurpetaR. P. De GrooteTommi EronenL. MorrisonZs. PodolyákL. CaneteIlkka Pohjalainensubject
Nuclear and High Energy PhysicsPenning trapAstronomy & Astrophysics01 natural sciencesIonPhysics Particles & Fieldsbeta-decay spectroscopyIsomersShell model0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear Experiment010306 general physicsSpectroscopyCouplingPhysicsScience & TechnologyNUCLEI010308 nuclear & particles physicsPhysicsPRECISION MASS-SPECTROMETRYNuclear shell modelR-PROCESSshell modelpenning trapRAMSEY METHODPenning traplcsh:QC1-999Physics NuclearExcited stateBeta (plasma physics)Physical SciencesSHELL-MODELTRANSITION-PROBABILITIESisomersAtomic physicsBeta-decay spectroscopylcsh:PhysicsIon cyclotron resonancedescription
Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isomeric state at 58.6(82) keV was resolved for the first time using the phase-imaging ion cyclotron resonance technique. The energy difference between the 10⁻ and 1⁻ states in 130In, stemming from parallel/antiparallel coupling of (π0g-19/2) ⊗ (v0h-111/2), has been found to be around 200 keV lower than predicted by the shell model. Precise information on the energies of the excited states determined in this work is crucial for producing new improved effective interactions for the nuclear shell model description of nuclei near 132Sn.
year | journal | country | edition | language |
---|---|---|---|---|
2020-09-01 | Physics Letters B |