0000000000015064

AUTHOR

Sami Rinta-antila

showing 172 related works from this author

Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

2020

Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…

Nuclear and High Energy PhysicsPenning trapAstronomy & Astrophysics01 natural sciencesIonPhysics Particles & Fieldsbeta-decay spectroscopyIsomersShell model0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear Experiment010306 general physicsSpectroscopyCouplingPhysicsScience & TechnologyNUCLEI010308 nuclear & particles physicsPhysicsPRECISION MASS-SPECTROMETRYNuclear shell modelR-PROCESSshell modelpenning trapRAMSEY METHODPenning traplcsh:QC1-999Physics NuclearExcited stateBeta (plasma physics)Physical SciencesSHELL-MODELTRANSITION-PROBABILITIESisomersAtomic physicsBeta-decay spectroscopylcsh:PhysicsIon cyclotron resonancePhysics Letters B
researchProduct

Total absorption γ -ray spectroscopy of niobium isomers

2019

15 pags. 17 figs., 5 tabs.

spektroskopiaNiobiumchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structure7. Clean energy01 natural sciences0103 physical sciencesDecay heat010306 general physicsSpectroscopyAbsorption (electromagnetic radiation)Nuclear ExperimentPhysicsZirconiumSpectrometer010308 nuclear & particles physicsPandemonium effectPenning trapnuclear structure and decayschemistry13. Climate actionFísica nuclearbeta decayAtomic physicsisomer decaysydinfysiikka
researchProduct

Direct mass measurements of neutron-rich zirconium isotopes up toZr104

2004

Atomic masses of radioactive zirconium isotopes from {sup 96}Zr to {sup 104}Zr have been measured with a relative accuracy of {<=}5x10{sup -7} using a Penning trap coupled to the ion guide isotope separator on-line system. The obtained two-neutron separation energies show strong local correlation in relation to the shape change and shape coexistence between N=58 and 60.

PhysicsNuclear and High Energy PhysicsIsotopeNuclear structureAnalytical chemistryMass spectrometryPenning trapAtomic massIonNuclear physicsIsotopes of zirconiumNeutronPhysics::Atomic PhysicsNuclear ExperimentPhysical Review C
researchProduct

Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the $r$-process calculatio…

2018

The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in $r$-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. $^{158}$Nd, $^{160}$Pm, $^{162}$Sm, and $^{164-166}$Gd have been measured for the first time and the precisions for $^{156}$Nd, $^{158}$Pm, $^{162,163}$Eu, $^{163}$Gd, and $^{164}$Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies $S_{2n}$ and neutron pairing energy metrics…

Nuclear TheoryastrofysiikkaRare earthnuclear astrophysicsGeneral Physics and AstronomyFOS: Physical sciences7. Clean energy01 natural sciencesbinding energy and massesNuclear Theory (nucl-th)0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Isotopeta114010308 nuclear & particles physicsNuclear structureharvinaiset maametallitPenning trapAtomic mass3. Good healthAstrophysics - Solar and Stellar Astrophysics13. Climate actionPairingr-processAtomic physicsydinfysiikkaAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The MARA-LEB ion transport system

2020

Abstract A low-energy branch is under development for the MARA vacuum-mode recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This development will allow for the study of proton-rich nuclei through laser ionisation spectroscopy and mass measurements. After stopping and extraction from a buffer gas cell, the ions of interest will be accelerated and transported to dedicated experimental setups by an ion transport system consisting of several focusing, accelerating and mass-separating elements. This article presents the current design and simulations for the ion transport.

Nuclear and High Energy PhysicsMaterials scienceBuffer gasLaser01 natural sciencesRecoil separatorlaw.inventionIonNuclear physicslawIonization0103 physical sciencesCurrent (fluid)Nuclear Experiment010306 general physicsSpectroscopy010303 astronomy & astrophysicsInstrumentationIon transporterNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Excited states in Br87 populated in β decay of Se87

2019

Physics010308 nuclear & particles physicsExcited state0103 physical sciencesAtomic physics010306 general physics01 natural sciencesPhysical Review C
researchProduct

First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments

2018

We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first ti…

Angular momentumResolution (mass spectrometry)Fission01 natural sciencesIonSubatomär fysikydinreaktiotPrimary (astronomy)0103 physical sciencesSubatomic PhysicsPhysics::Atomic and Molecular ClustersfissionYield ratioPhysics::Atomic PhysicsPhysics::Chemical PhysicsNuclear Experiment010306 general physicsnuclear reactionsPhysicsta114010308 nuclear & particles physicsPenning trapfissioYield (chemistry)Atomic physicsisomer decaysydinfysiikka
researchProduct

First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement : The P2n value of 136Sb

2018

Background: β-delayed multiple neutron emission has been observed for some nuclei with A≤100, being the Rb100 the heaviest β2n emitter measured to date. So far, only 25P2n values have been determined for the ≈300 nuclei that may decay in this way. Accordingly, it is of interest to measure P2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A>100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of a…

astrofysiikkaNuclear Theorynuclear astrophysicsr processbeta decayNuclear Experimentydinfysiikkanuclear engineeringnuclear structure and decaysisotope separation and enrichmentneutron physicsemissio (fysiikka)
researchProduct

Experimental study of 100Tc β decay with total absorption γ -ray spectroscopy

2017

The β decay of 100Tc has been studied by using the total absorption γ -ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ -ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also r…

total absorption gamma-ray spectroscopybeta decay
researchProduct

β decay of Cd127 and excited states in In127

2019

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyvaskyla. Following high-resolution mass separation in a Penning trap, β-γ-γ coincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2- states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(+12-8)s and 0.36(4) s. The experimentally observed β feeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations.

PhysicsDecay scheme010308 nuclear & particles physicsNuclear shell modelPenning trap01 natural sciencesBeta decayMass separationExcited state0103 physical sciencesGamma spectroscopyAtomic physics010306 general physicsGround statePhysical Review C
researchProduct

Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb

2017

Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed

Physicsta114010308 nuclear & particles physicsPhysicsQC1-99901 natural sciencesBeta decayNuclear physicsnuclear massesBeta (plasma physics)0103 physical sciencesstructuredecay data measurementsAtomic physics010306 general physicsAbsorption (electromagnetic radiation)Nuclear ExperimentEPJ Web of Conferences
researchProduct

New accurate measurements of neutron emission probabilities for relevant fission products

2017

We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations. peerReviewed

Neutron emissionQC1-999Nuclear physicsNeutronAstrophysics7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesNeutron010306 general physicsNuclear Experimentastro nuclear physicsPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Fission productsPnta114Isotope:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsDetectorBeta (plasma physics)r-processFísica nuclearDelayed neutronNeutron emission
researchProduct

Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP : Reduced Neutron Pairing and Implications for r-Process Calculations

2018

The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. Nd158, Pm160, Sm162, and Gd164-166 have been measured for the first time, and the precisions for Nd156, Pm158, Eu162,163, Gd163, and Tb164 have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2n and neutron pairing energy metrics Dn. The data do not support the existence of…

astrofysiikkanuclear astrophysicsharvinaiset maametallitydinfysiikkabinding energy and masses
researchProduct

Characterization of a Be(p,xn) Neutron Source for Fission Yields Measurements

2013

We report on measurements performed at The Svedberg Laboratory (TSL) to characterize a proton-neutron converter for independent fission yield studies at the IGISOL-JYFLTRAP facility (Jyv\"askyl\"a, Finland). A 30 MeV proton beam impinged on a 5 mm water-cooled Beryllium target. Two independent experimental techniques have been used to measure the neutron spectrum: a Time of Flight (TOF) system used to estimate the high-energy contribution, and a Bonner Sphere Spectrometer able to provide precise results from thermal energies up to 20 MeV. An overlap between the energy regions covered by the two systems will permit a cross-check of the results from the different techniques. In this paper, th…

PhysicsBonner sphereNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsSpectrometerta114010308 nuclear & particles physicsFissionNuclear TheoryNuclear dataFOS: Physical sciencesFission product yieldInstrumentation and Detectors (physics.ins-det)7. Clean energy01 natural sciencesThe Svedberg LaboratoryNuclear physics0103 physical sciencesNeutron sourceNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentNuclear Data Sheets
researchProduct

Study of the β decay of fission products with the DTAS detector

2017

Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. The analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors. peerReviewed

High Energy Physics::Experimentbeta decayTotal Absorption Spectroscopy
researchProduct

Production of neutron deficient rare isotope beams at IGISOL; on-line and off-line studies

2004

This article reports on recent on-line yield measurements employing the light-ion and heavy-ion reaction-based ion guide systems and new results on a-recoil ion transport properties in ion guides with and without electric fields. In addition, the presently used ion guide designs for fusion evaporation reactions are introduced. The present study investigated different schemes for ion extraction from the gas cell. The addition of an extra ring electrode between the traditional skimmer electrode and the exit hole led to transmission independent of the primary beam intensity as opposed to strong intensity dependence observed earlier with the plain skimmer only. Furthermore, the mass resolving p…

FUSION-EVAPORATION REACTIONSISOMERNuclear and High Energy PhysicsEFFICIENCYIon beamChemistryHF-171Buffer gasion guideElectronIon gunSTATEon-line isotope separationIonION-GUIDE TECHNIQUEIon beam depositionPhysics::Plasma PhysicsNeutronSEPARATOR ONLINEAtomic physicsLASER SPECTROSCOPYSPIGInstrumentationIon transporterNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Single and Double Beta-DecayQValues among the TripletZr96,Nb96, andMo96

2016

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16)  keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the…

QuenchingCoupling constantPhysics010308 nuclear & particles physicsQ valueGeneral Physics and AstronomyMass spectrometry7. Clean energy01 natural sciencesAtomic massMain branchDouble beta decay0103 physical sciencesUniquenessAtomic physics010306 general physicsPhysical Review Letters
researchProduct

Total absorption study of the \beta decay of 102,104,105Tc

2013

The β-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely 102,104,105Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations. peerReviewed

Experimental nuclear physics
researchProduct

Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data

2020

For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…

Nuclear TheorytutkimuslaitteethiukkaskiihdyttimetNuclear Experimentydinfysiikka
researchProduct

Experimental studies at JYFLTRAP

2007

JYFLTRAP is a Penning trap system at the accelerator laboratory in Jyvaskyla, Finland that enables high-precision experiments with stored, exotic species that are produced at the IGISOL facility. On one hand, these can be performed within the trap itself, like e.g. mass spectrometry. On the other hand, the trap can be used to provide the highly purified species for further experiments, e.g. for trap-assisted nuclear decay spectroscopy. This contribution focuses on these two possible applications with the presentation of some recent results on superallowed beta decays.

Trap (computing)Nuclear physicsChemistryQ valueMass spectrometryPenning trapSpectroscopyAtomic massRadioactive decay
researchProduct

Penning-trap-assisted study of excitations in Br88 populated in β decay of Se88

2017

Excited levels of $^{88}\mathrm{Br}$ populated in the $\ensuremath{\beta}$ decay of $^{88}\mathrm{Se}$ have been studied by means of $\ensuremath{\beta}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{\gamma}$ spectroscopy methods. Neutron-rich parent $^{88}\mathrm{Se}$ nuclei were produced with proton-induced fission of $^{238}\mathrm{U}$ using the Ion Guide Isotope Separator On-Line (IGISOL) method and separated from contaminants using a dipole magnet and the coupled JYFLTRAP Penning trap at the Accelerator Laboratory of the University of Jyv\"askyl\"a. The level scheme of $^{88}\mathrm{Br}$ has been constructed and $logft$ values of levels were determined. The ground-state spin o…

Physics010308 nuclear & particles physicsExcited stateSpectroscopy methods0103 physical sciencesAtomic physics010306 general physicsPenning trapSpin (physics)01 natural sciencesPhysical Review C
researchProduct

A GEM-TPC in twin configuration for the Super-FRS tracking of heavy ions at FAIR

2018

The GEM-TPC [1] described herein will be part of the standard beam-diagnostics equipment of the Super-FRS [2] . This chamber will provide tracking information for particle identification at rates up to 1 MHz on an event-by-event basis. The key requirements of operation for these chambers are: close to 100% tracking efficiency under conditions of high counting rate, spatial resolution below 1 mm and a superb large dynamic range covering projectiles from Z=1 up to Z=92. The current prototype consists of two GEM-TPCs inside a single vessel, which are operating independently and have electrical drift fields in opposite directions. The twin configuration is done by flipping one of the GEM-TPCs o…

radioactive ion beamNuclear and High Energy PhysicsProtonfragment separatorPhysics::Instrumentation and Detectorssuper-FRSchemistry.chemical_elementTracking (particle physics)01 natural sciences7. Clean energyParticle identificationGSIXenonOptics0103 physical sciencesseurantaNuclear Experiment010306 general physicsInstrumentationImage resolutionPhysicsTime projection chamberta114010308 nuclear & particles physicsProjectilebusiness.industrytrackingfairtime projection chamberbeam adjustmentchemistrygas electron multiplierGas electron multiplierbusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

In-beam spectroscopy with intense ion beams: Evidence for a rotational structure in246Fm

2012

The rotational structure of ${}^{246}$Fm has been investigated using in-beam $\ensuremath{\gamma}$-ray spectroscopic techniques. The experiment was performed using the JUROGAMII germanium detector array coupled to the gas-filled recoil ion transport unit (RITU) and the gamma recoil electron alpha tagging (GREAT) focal plane detection system. Nuclei of ${}^{246}$Fm were produced using a 186 MeV beam of ${}^{40}$Ar impinging on a ${}^{208}$Pb target. The JUROGAMII array was fully instrumented with Tracking Numerical Treatment 2 Dubna (TNT2D) digital acquisition cards. The use of digital electronics and a rotating target allowed for unprecedented beam intensities of up to 71 particle-nanoamper…

PhysicsNuclear and High Energy Physicsta114010308 nuclear & particles physics23.20.−g 24.10.Eq 21.10.Re 27.90.+b[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Tracking (particle physics)01 natural sciencesRecoil electronKokeellinen ydinfysiikkaSemiconductor detectorIonRecoilCardinal pointNuclear magnetic resonance0103 physical sciencesNuclear Physics - ExperimentExperimental nuclear physicsAtomic physicsNuclear Experiment010306 general physicsSpectroscopyBeam (structure)Physical Review C
researchProduct

Twin GEM-TPC prototype (HGB4) beam test at GSI and Jyväskylä : a development for the Super-FRS at FAIR

2017

The FAIR[1] facility is an international accelerator centre for research with ion and antiproton beams. It is being built at Darmstadt, Germany as an extension to the current GSI research institute. One major part of the facility will be the Super-FRS[2] separator, which will be include in phase one of the project construction. The NUSTAR experiments will benefit from the Super-FRS, which will deliver an unprecedented range of radioactive ion beams (RIB). These experiments will use beams of different energies and characteristics in three different branches; the high-energy which utilizes the RIB at relativistic energies 300-1500 MeV/u as created in the production process, the low-energy bra…

Radioactive ion beamsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsSeparator (oil production)hiukkaskiihdyttimet01 natural sciences7. Clean energy114 Physical sciencesParticle identificationNuclear physics0103 physical sciencesElectronicsNuclear ExperimentdetectorsPhysicsta114010308 nuclear & particles physicsProjectileI.2.7Detectorparticle acceleratorsilmaisimetAntiprotonPhysics::Accelerator PhysicsF.2.2Beam (structure)
researchProduct

Precision experiments on exotic nuclei at IGISOL

2006

Abstract Cooling and trapping techniques of low-energy radioactive ion beams of refractory elements employed at the IGISOL facility are presented with emphasis on high-precision measurements of the ground state properties of exotic nuclei. The impact of the new generation Paul and Penning traps on mass measurements of short-lived nuclei is discussed with examples on precision measurements of masses of super-allowed beta emitters and neutron-rich nuclei. As a new concept the trap-assisted spectroscopy of radioactive ions is presented with applications in collinear laser spectroscopy, decay spectroscopy of isobarically purified sources and in nuclear cross-section measurements by ion counting.

ChemistryNuclear TheoryRefractory metalsTrappingCondensed Matter PhysicsPenning trapAtomic massIonBeta (plasma physics)Physics::Atomic PhysicsPhysical and Theoretical ChemistryAtomic physicsNuclear ExperimentGround stateSpectroscopyInstrumentationSpectroscopyInternational Journal of Mass Spectrometry
researchProduct

First observation of excited states of173Hg

2012

The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.

PhysicsNuclear and High Energy Physicsta114010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryFOS: Physical sciencesContext (language use)Radiation7. Clean energy01 natural sciencesmedicine.anatomical_structureExcited state0103 physical sciencesmedicineAlpha decayNuclear Experiment (nucl-ex)Atomic physicsNuclear Experiment010306 general physicsSpectroscopyNuclear ExperimentNucleusPhysical Review C
researchProduct

Prompt gamma ray-spectroscopy of N = 50 fission fragments

2013

Excited states in the nuclei 83 As and 84,86 Se have been studied via prompt -ray spectroscopy. The nuclei were produced by the proton-induced fission of a 238 U target, at the accelerator of the University of Jyvaskyla. The JUROGAM-II array was used to detect prompt -rays and a triple- coincidence analysis performed. A comparison of the N = 50 nuclei with shell-model calculations reproduces the low-lying states in 83 As and 84 Se well. The inclusion of particle-hole excitations is necessary to correctly describe the states above ∼ 3.5 MeV.

Physicsta114[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]010308 nuclear & particles physicsFissionAstrophysics::High Energy Astrophysical PhenomenaPhysicsQC1-999Nuclear Theory01 natural sciences7. Clean energyCoincidenceNuclear physicsExcited state0103 physical sciencesGamma spectroscopyAtomic physics010306 general physicsSpectroscopyNuclear ExperimentComputingMilieux_MISCELLANEOUSEPJ Web of Conferences
researchProduct

Discovery of an Exceptionally Strong β -Decay Transition of F20 and Implications for the Fate of Intermediate-Mass Stars

2019

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupte…

PhysicsSolar massThermonuclear fusionElectron captureDegenerate energy levelsGeneral Physics and AstronomyAstrophysics01 natural sciencesStarsNeutron starSupernovaOrders of magnitude (time)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsPhysical Review Letters
researchProduct

Towards commissioning the new IGISOL-4 facility

2013

Abstract The Ion Guide Isotope Separator On-Line facility at the Accelerator Laboratory of the University of Jyvaskyla is currently being re-commissioned as IGISOL-4 in a new experimental hall. Access to intense beams of protons and deuterons from a new MCC30/15 cyclotron, with continued possibility to deliver heavy-ion beams from the K = 130 MeV cyclotron, offers extensive opportunities for long periods of fundamental experimental research, developments and applications. A new layout of beam lines with a considerable increase in floor space offers new modes of operation at the facility, as well as a possibility to incorporate more complex detector setups. We present a general overview of I…

Radioactive ion beamsNuclear and High Energy Physicsta114Project commissioningComputer scienceNuclear engineeringDetectorCyclotronExperimental researchlaw.inventionNuclear physicslawNeutronInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Precision mass measurements of neutron-rich Tc, Ru, Rh, and Pd isotopes

2007

The masses of neutron-rich $^{106\ensuremath{-}112}\mathrm{Tc}$, $^{106\ensuremath{-}115}\mathrm{Ru}$, $^{108\ensuremath{-}118}\mathrm{Rh}$, and $^{112\ensuremath{-}120}\mathrm{Pd}$ produced in proton-induced fission of uranium were determined using the JYFLTRAP double Penning trap setup. The measured isotopic chains include a number of previously unmeasured nuclei. Typical precisions on the order of 10 keV or better were achieved, representing a factor of 10 improvement over earlier data. In many cases, significant deviations from the earlier measurements were found. The obtained data set of 39 masses is compared with different mass predictions and analyzed for global trends in the nuclear…

PhysicsMass numberNuclear and High Energy PhysicsIsotopeFissionNuclear structureAnalytical chemistryOrder (ring theory)chemistry.chemical_elementUraniumPenning trapNuclear physicschemistryNeutronNuclear ExperimentPhysical Review C
researchProduct

Upgrades to the collinear laser spectroscopy experiment at the IGISOL

2020

Abstract We give an overview of recent changes to the collinear laser spectroscopy beamline in the IGISOL laboratory. We present a new data acquisition system, commissioning of a newly installed charge exchange cell, and cooler-voltage calibration measurements. Currently ongoing modifications to the RFQ cooler-buncher are also discussed.

Nuclear and High Energy PhysicsMaterials science010308 nuclear & particles physicsbusiness.industry01 natural sciencesData acquisitionOpticsBeamline0103 physical sciencesCalibration010306 general physicsSpectroscopybusinessInstrumentationCharge exchangeNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

High-Precision Proton-Capture Q Values for 25Al(p,γ)26Si and 30P(p,γ)31Si

2017

The masses of astrophysically relevant nuclei, 25Al and 30P, have recently been measured with the JYFLTRAP double Penning trap at the new IGISOL-4 facility at the University of Jyväskylä. Unparalleled precisions of 63 and 64 eV were achieved for the 25Al and 30P masses, respectively. The proton-capture Q values for 25Al(p, γ)26Si and 30P(p, γ)31S were also determined, and their precisions improved by a factor of 4 and 2, respectively, in comparison with AME12. The impact of the more precise values on the resonant proton-capture rate has also been studied. peerReviewed

Penning-trap mass spectrometryatomic massesnovat
researchProduct

Developments for neutron-induced fission at IGISOL-4

2016

At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at di↵erent angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with prelimi…

Nuclear and High Energy Physicsta114010308 nuclear & particles physicsNeutron emissionChemistryXenon-135Astrophysics::High Energy Astrophysical Phenomenatarget and ion source techniquesNuclear Theoryion guideFission product yield01 natural sciencesFast fissionNuclear physicslow-energy separators0103 physical sciencesneutron-induced fissionNeutron cross sectionNeutron sourceNeutron010306 general physicsLong-lived fission productNuclear Experimentisotope productionInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Development of trap-assisted spectroscopy and its application to beta decay of neutron-rich zirconium isotopes

2006

isotoopitspektroskopia
researchProduct

Development of a laser ion source at IGISOL

2005

FURIOS, the Fast Universal laser IOn Source, is under development at the IGISOL (Ion Guide Isotope Separator On-Line) mass separator facility in Jyvaskyla, Finland. This new laser ion source will combine a state-of-the-art solid state laser system together with a dye laser system, for the selective and efficient production of exotic radioactive species without compromising the universality and fast release inherent in the IGISOL system. The motivation for, and development of, this ion source is discussed in relation to the programme of research ongoing at this mass separator facility.

PhysicsNuclear physicsNuclear and High Energy PhysicsFast releaseDye laserlawSolid-state laserLaserIon sourcelaw.inventionIonJournal of Physics G: Nuclear and Particle Physics
researchProduct

Super-Allowed β Decay of23Mg Studied with a High-Precision Germanium Detector

2015

Physicsnuclear mirror transitionsta114super-allowed decayAnalytical chemistryquark-mixing matrixSemiconductor detectorProceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014)
researchProduct

Large Impact of the Decay of Niobium Isomers on the Reactor ¯νe Summation Calculations

2019

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of 100gs;100mNb and 102gs;102mNb β decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the β decay of the isomeric states. The new data obtained in this …

neutriinotbeta decayNuclear Experimentydinfysiikka
researchProduct

First mass measurement at JYFLTRAP

2004

The first mass measurements at JYFLTRAP facility are reviewed. Those are also first ever direct mass measurements of the heaviest Zr-isotopes. Results are compared to atomic mass evaluation data and the recent calculations. The first TOF-resonances from high-precision trap and an implication to high-precision mass measurements are discussed.

Trap (computing)PhysicsNuclear physicsNuclear and High Energy PhysicsEvaluation dataAtomic physicsNuclear ExperimentMass measurementAtomic massNuclear Physics A
researchProduct

Total absorption γ -ray spectroscopy of the β -delayed neutron emitters I137 and Rb95

2019

The decays of the β-delayed neutron emitters I137 and Rb95 have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…

PhysicsSpectrometer010308 nuclear & particles physicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaPenning trap01 natural sciencesNuclear physics13. Climate action0103 physical sciencesNeutronGamma spectroscopyNuclear Experiment010306 general physicsSpectroscopyAbsorption (electromagnetic radiation)Delayed neutronPhysical Review C
researchProduct

Promptγ-ray spectroscopy of the neutron-rich124Cd

2013

Prompt γ -ray spectroscopy of neutron-rich cadmium isotopes has been performed. The nuclei of interest have been populated via a 25-MeV, proton-induced fission of the 238 U thick target and prompt γ -rays measured using the multi-detector HPGe array JUROGAM II. New high-spin decays have been observed and placed in the level scheme using triple coincidence gates. The experimental results are compared to shell-model calculations and show good agreement.

PhysicsTriple coincidence[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]ta114010308 nuclear & particles physicsFissionPhysicsQC1-999Astrophysics::High Energy Astrophysical PhenomenaNuclear Theory7. Clean energy01 natural sciencesEngineering physicsSemiconductor detectorNuclear physicsIsotopes of cadmium0103 physical sciencesNeutronNuclear Experiment010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUSEPJ Web of Conferences
researchProduct

High-precision measurement of the mass difference between 102Pd and 102Ru

2019

The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyväskylä. Th…

neutrinoless double-electron capturepenning trapQ-valuesydinfysiikkahigh-precision mass spectrometry
researchProduct

Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb

2017

The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…

FissionNeutron emissionQC1-999Astrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNuclear physicsNeutronAstrophysics7. Clean energy01 natural sciencesNuclear physicsEmission0103 physical sciencesNeutronDecay heat010306 general physicsNuclear Experimentastro nuclear physicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPnIsotopeta114:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsBranching fractionPhysicsNeutron capture13. Climate actionr-processPhysics::Accelerator PhysicsFísica nuclearAtomic physics
researchProduct

Characterization of a cylindrical plastic β-detector with Monte Carlo simulations of optical photons

2017

In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic β-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extens…

optical photonstotal absorption spectroscopyplastic scintillatorsMonte Carlo simulations
researchProduct

Determination of β -decay ground state feeding of nuclei of importance for reactor applications

2020

12 pags., 6 figs., 3 tabs.

PhysicsWork (thermodynamics)Fission products010308 nuclear & particles physicsNuclear structureFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structure7. Clean energy01 natural sciencesSynthetic dataNuclear physics13. Climate actionRobustness (computer science)0103 physical sciencesNeutronHigh Energy Physics::ExperimentDecay heatNuclear Experiment (nucl-ex)010306 general physicsGround stateNuclear Experiment
researchProduct

Independent Isotopic Product Yields in 25 MeV and 50 MeV Charged Particle Induced Fission of 238U and 232Th

2014

Abstract Independent isotopic yields for most elements from Zn to La in 25-MeV proton-induced fission of 238U and 232Th have been determined at the IGISOL facility in the University of Jyvaskyla. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in 50-MeV proton-induced fission of 238U and for Zn, Ga, Rb, Sr, Cd and In in 25-MeV deuterium-induced fission of 238U have been measured. The utilised technique recently developed at the University of Jyvaskyla, is based on a combination of the ion guide technique and the ability of a Penning trap to unambiguously identify the isotopes by their atomic mass. Since the yields are determined by ion counting, no prior knowledge beyond the …

Nuclear physicsPhysicsNuclear and High Energy Physicsta114IsotopeFissionProduct (mathematics)Nuclear dataPenning trapCharged particleAtomic massIonNuclear Data Sheets
researchProduct

Precise measurements of half-lives and branching ratios for the ββ mirror transitions in the decay of 23Mg and 27Si

2017

Half-lives and branching ratios for the two mirror ββ decays of 23Mg and 27Si have been measured at the University of Jyväskylä with the IGISOL facility. The results obtained, T1/2=11.303(3)T1/2=11.303(3) s and T1/2=4.112(2)T1/2=4.112(2) s for the half-lives of 23Mg and 27Si , respectively, are 7 and 8 times more precise than the averages of previous measurements. The values obtained for the super-allowed branching ratios of 23Mg and 27Si are B.R.=92.18(8)%B.R.=92.18(8)% and B.R.=99.74(2)%B.R.=99.74(2)% , respectively. The result for 23Mg is three times more precise than the average of the previous measurements, while for 27Si the precision has not been improved, the average of the previous…

branching ratioshalf-livesmirror transitions
researchProduct

Experimental investigation of the 0⁺₂ band in ¹⁵⁴Sm as a β-vibrational band

2014

gamma rayspektroskopiarare-earthcollective modelselectric monopoleinternal conversion electrons
researchProduct

First prompt in-beam gamma-ray spectroscopy of a superheavy element: the 256Rf

2013

Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 ¯h, was discovered in the nucleus 256Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a…

Experimental Nuclear Physics
researchProduct

High-precision mass measurements for the isobaric multiplet mass equation atA= 52

2017

Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…

massaspektrometriaNuclear and High Energy Physicsisobaric multipletProtonCo-52Proton decayastrofysiikkaPenning trapFOS: Physical scienceskupariQuadratic form (statistics)atomipainot114 Physical sciences01 natural sciences7. Clean energyPENNING TRAPS0103 physical sciencesNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentMultipletmass measurementPhysicsisotoopitSPECTROSCOPY010308 nuclear & particles physicsMIRROR NUCLEIRAMSEY METHODPenning trapMN-52Mass formulaANALOG STATESPROTON RADIOACTIVITYCOULOMB DISPLACEMENT ENERGIESIsobaric processBETA-RAYAtomic physicsydinfysiikkaDECAYExcitationJournal of Physics G: Nuclear and Particle Physics
researchProduct

Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates

2017

J. L. Taín et al. -- 6 pags., 7 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0

Physicsta114010308 nuclear & particles physicsBranching fractionNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaPhysicsQC1-999Nuclear Theory7. Clean energy01 natural sciences3. Good health0103 physical sciencesr-processNeutronAtomic physics010306 general physicsSpectroscopyNucleonNuclear ExperimentDelayed neutronRadioactive decayastro nuclear physics
researchProduct

High-precision measurement of the mass difference between 102Pd and 102Ru

2019

Abstract The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyva…

ta114010308 nuclear & particles physicsChemistryElectron captureneutrinoless double-electron capturepenning trapQ-valuesCondensed Matter PhysicsPenning trap01 natural sciencesAtomic massNuclear physics0103 physical sciencesPhysical and Theoretical Chemistryydinfysiikka010306 general physicshigh-precision mass spectrometryInstrumentationSpectroscopyReliability (statistics)Ion cyclotron resonanceInternational Journal of Mass Spectrometry
researchProduct

Laser spectroscopy with an electrostatic ConeTrap

2017

A compact electrostatic trap has been designed and installed as part of the recent upgrades to the IGISOL IV facility. The ConeTrap provides an in vacuo optical pumping site for low energy (800 eV) ionic ensembles available for interaction periods of 10-100 ms. At present, 6.7(3) % of injected mass A=98 ions can be trapped, stored for 5 ms, extracted and transported to a laser-ion interaction region. This fraction represents those ions for which no perturbation to total energy or energy spread is observed. Proposed enhancements to the trap are designed to improve the trapping efficiency by up to a factor of 5. Differential pumping and reduction in background pressure below the present 10−6 …

Nuclear and High Energy Physicsionit010308 nuclear & particles physicsChemistryspektroskopiaansatIonic bondingTrappingCondensed Matter PhysicsLaserElectrostatics01 natural sciencesAtomic and Molecular Physics and OpticsCharged particlelaserlaw.inventionIonOptical pumpinglaw0103 physical sciencesPhysical and Theoretical ChemistryAtomic physics010306 general physicsSpectroscopyelectrostatic
researchProduct

Conversion electron spectroscopy at IGISOL

2012

Conversion elecron spectroscopy has been an important part of the nuclear spectrocopy research at the Department of Physics of the University of Jyv¨askyl¨a since the commissioning of the first cyclotron in the mid 1970s. At the IGISOL facility a specialiced conversion electron spectrometer ELLI was developed in the late 1980s. The first results with ELLI were obtained using the beams from the old MC-20 cyclotron to study newly discovered isotopes of refractory fission products. In the present K130 cyclotron laboratory ELLI has been utilized in many decay-spectroscopy experiments both neutron-deficient and neutron-rich side of the valley of stability. In the early 2000s the new JYFLTRAP ion…

Nuclear and High Energy Physicson-line mass separatorElectron spectrometerChemistrytrap-assisted spectroscopyCyclotronCondensed Matter PhysicsPenning trapElectron spectroscopyAtomic and Molecular Physics and Opticslaw.inventionBeamlinelawValley of stabilityIon trapconversion electron spectroscopyPhysical and Theoretical ChemistryAtomic physicsSpectroscopy
researchProduct

Precision Ga71–Ge71 mass-difference measurement

2016

Abstract The Ga 71 ( ν e , e − ) Ge 71 reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla to Q  = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in Ga 71 .

Physics010308 nuclear & particles physicsQ valueSolar neutrinoContext (language use)Condensed Matter PhysicsMass spectrometry01 natural sciencesNuclear physics0103 physical sciencesPhysical and Theoretical ChemistryAtomic physics010306 general physicsInstrumentationSpectroscopyInternational Journal of Mass Spectrometry
researchProduct

Excited states in 31S studied via beta decay of 31Cl

2006

The beta decay of 31Cl has been studied with a silicon detector array and a HPGe detector at the IGISOL facility. Previously controversial proton peaks have been confirmed to belong to 31Cl and a new proton group with an energy of 762(14) keV has been found. Proton captures to this state at 6921(15) keV in 31S can have an effect on the reaction rate of 30P(p,γ) in ONe novae. Gamma rays of 1249.1(14) keV and 2234.5(8) keV corresponding to the de-excitations of the first two excited states in 31S have been measured. No beta-delayed protons from the IAS have been observed. peerReviewed

PhysicsNuclear and High Energy PhysicsprotonitProtonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHadronGamma rayNova (laser)Beta decaybeetahajoaminenNuclear physicsExcited stateNuclear fusionbeta decayProton emissionAtomic physicsNuclear Experiment
researchProduct

Precision Mass Measurements beyond $^{132}$Sn: Anomalous behaviour of odd-even staggering of binding energies

2012

Atomic masses of the neutron-rich isotopes $^{121-128}$Cd, $^{129,131}$In, $^{130-135}$Sn, $^{131-136}$Sb, and $^{132-140}$Te have been measured with high precision (10 ppb) using the Penning trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei $^{135}$Sn, $^{136}$Sb, and $^{139,140}$Te were measured for the first time. The data reveals a strong $N$=82 shell gap at $Z$=50 but indicates the importance of correlations for $Z&gt;50$. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N$=82 for Sn, with the $Z$-dependence that is unexplainable by the current theoretical models.

nuclear spectroscopyydinrakenneTheoretical nuclear physicsaccelerator-based physicsnuclear structureydinspektroskopiaFOS: Physical sciencesNuclear Experiment (nucl-ex)ydinfysiikkakiihdytinpohjainen fysiikkaNuclear Experiment
researchProduct

$Q$-value of the superallowed $\beta$ decay of 62Ga

2006

Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.

Nuclear and High Energy PhysicsMass excessQ valuePenning trapCyclotronFOS: Physical sciences27.50.+e; 23.40.-s; 24.80.+g; 21.10.Dr[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyIonlaw.inventionNuclear physicslawDouble beta decayFt value0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsRadionuclide010308 nuclear & particles physicsBeta decayQ-valueAtomic massAtomic mass
researchProduct

Proton-neutron pairing correlations in the self-conjugate nucleus 42Sc

2021

Collinear laser spectroscopy of the N=Z=21 self-conjugate nucleus 42Sc has been performed at the JYFL IGISOL IV facility in order to determine the change in nuclear mean-square charge radius between the Iπ=0+ ground state and the Iπ=7+ isomer via the measurement of the 42g,42mSc isomer shift. New multi-configurational Dirac-Fock calculations for the atomic mass shift and field shift factors have enabled a recalibration of the charge radii of the 42−46Sc isotopes which were measured previously. While consistent with the treatment of proton-neutron, proton-proton and neutron-neutron pairing on an equal footing, the reduction in size for the isomer is observed to be of a significantly larger m…

CHARGE RADIINuclear and High Energy PhysicsProtonCollinear laser spectroscopyQC1-999spektroskopiaNuclear TheoryFOS: Physical sciencesAstronomy & Astrophysicsnucl-ex01 natural sciencesPhysics Particles & FieldsCharge radius0103 physical sciencesPhysics::Atomic and Molecular Clustersddc:530NeutronNuclear Physics - ExperimentNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsisotoopitScience & TechnologyIsotopeMagnetic moment010308 nuclear & particles physicsPhysicsProton-neutron pairingTABLEHyperfine structure and isotope shiftAtomic mass3. Good healthCharge radiusPhysics NuclearPairingPhysical SciencesSHELL-MODELAtomic physicsydinfysiikkaGround stateskandiumPhysics Letters B
researchProduct

Simulations of the stopping efficiencies of fission ion guides

2017

With the Ion Guide Isotope Separator On-Line (IGISOL) facility, located at the University of Jyväskylä, products of nuclear reactions are separated by mass. The high resolving power of the JYFLTRAP Penning trap, with full separation of individual nuclides, capacitates the study of nuclides far from the line of stability. For the production of neutron-rich medium-heavy nuclides, fissioning of actinides is a feasible reaction. This can be achieved with protons from an in-house accelerator or, alternatively, with neutrons through the addition of a newly developed Be(p,xn)-converter. The hereby-obtained fission products are used in nuclear data measurements, for example fission yields, nuclear …

Nuclear reactionCold fissionFissionQC1-999Nuclear TheoryFission product yield01 natural sciencesmethodsSubatomär fysikNuclear physicsmenetelmätSubatomic Physics0103 physical sciencesNeutronNuclideNuclear Experiment010306 general physicsFission productsexperimental facilitiesta114010308 nuclear & particles physicsChemistryPhysicsRadiochemistryvarusteettekniikattechniquesLong-lived fission productequipmentEPJ Web of Conferences
researchProduct

Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

2016

International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…

Total absorption spectroscopyFissionQC1-999CHOOZ[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energy114 Physical sciencesSpectral linelaw.inventionPhysics::GeophysicsNuclear physicslawnuclear masses0103 physical sciencesstructure[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physicsPhysicsFission productsta114010308 nuclear & particles physicsPhysicsPressurized water reactorNuclear dataPandemonium effectPRODUCTS13. Climate actiondecay data measurements
researchProduct

Radioactive ion beam manipulation at the IGISOL-4 facility

2020

The IGISOL-4 facility in the JYFL Accelerator Laboratory of the University of Jyvaskyla (JYFL-ACCLAB) produces low-energy radioactive ion beams, primarily for nuclear spectroscopy, utilizing an ion guide-based, ISOL-type mass separator. Recently, new ion manipulation techniques have been introduced at the IGISOL-4 including the application of the PI-ICR (Phase-Imaging Ion Cyclotron Resonance) technique at the JYFLTRAP Penning trap, as well as commissioning of a Multi-Reflection Time-Of-Flight (MR-TOF) separator/spectrometer. The successful operation of the MR-TOF also required significant improvement of the Radio-Frequency Quadrupole (RFQ) cooler and buncher device beam pulse time structure…

Materials scienceSpectrometerIon beamPhysicsQC1-999tutkimuslaitteethiukkaskiihdyttimetPenning trapIon sourceIonNuclear physicsBeamlineIonizationPhysics::Accelerator PhysicsydinfysiikkaNuclear ExperimentIon cyclotron resonanceEPJ Web of Conferences
researchProduct

Upgrade and yields of the IGISOL facility

2008

The front end of the Jyvaskyla IGISOL facility was upgraded in 2003 by increasing its pumping capacity and by improving the radiation shielding. In late 2005, the skimmer electrode of the mass separator was replaced by a sextupole ion guide, which improved the mass separator efficiency up to an order of magnitude. The current design of the facility is described. The updated yield data, achieved with and without the additional JYFLTRAP purification, using both fusion evaporation reactions and particle induced fission is presented to give an overview of the capability of the facility. These data have been determined either by radioactivity measurements or by direct ion counting after the Penn…

Nuclear physicsFront and back endsNuclear and High Energy PhysicsUpgradeRadiation shieldingChemistryFissionMass spectrometryPenning trapInstrumentationIonSeparator (electricity)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

High-Precision Q -Value Measurement Confirms the Potential of Cs135 for Absolute Antineutrino Mass Scale Determination

2020

The ground-state-to-ground-state $\ensuremath{\beta}$-decay $Q$ value of $^{135}\mathrm{Cs}(7/{2}^{+})\ensuremath{\rightarrow}^{135}\mathrm{Ba}(3/{2}^{+})$ has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between $^{135}\mathrm{Cs}(7/{2}^{+})$ and $^{135}\mathrm{Ba}(3/{2}^{+})$. With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted $Q$ value in the Atomic Mass Evaluation 2016. The measurement confirms that the f…

PhysicsQ value0103 physical sciencesGeneral Physics and AstronomyResonanceMass scaleNeutrinoAtomic physics010306 general physics01 natural sciencesOrder of magnitudeAtomic massPhysical Review Letters
researchProduct

Investigation of a gas-catcher/ion guide system using alpha-decay recoil products

2002

Abstract 219Rn recoils from the alpha decay of 223Ra have been used to study the efficiency and delay time distributions of a gas-catcher/ion guide system. Ions with charge states up to +4 were coming out of the gas cell. Combining efficiency and delay time measurements, ion survival times in plasma free conditions can be deduced.

Nuclear physicsPhysicsNuclear and High Energy PhysicsRecoilPhysics::Plasma PhysicsComing outCharge (physics)Alpha decayPlasmaAtomic physicsIonDelay timeNuclear Physics A
researchProduct

Identification of a dipole band above the Iπ = 31/2- isomeric state in 189Pb

2015

A dipole band of six transitions built upon a firmly established I π = 31/2− isomeric state has been identified in 189Pb using recoil-isomer tagging. This is the lightest odd-mass Pb nucleus in which a dipole band is known. The dipole nature of the new transitions has been confirmed through angular-intensity arguments. The evolution of the excitation energy and the aligned-angular momentum of the states in the new dipole band are compared with those of dipole bands in heavier, odd-mass lead isotopes. This comparison suggests that the new band in 189Pb is based upon a π[s−2 1/2h9/2i13/2]11− ⊗ ν[i −1 13/2+ ]13/2+ configuration. However, the increased aligned-angular momentum in 189Pb may sugg…

dipole bandsnuclear isomerslead isotopesPhysics::Atomic PhysicsNuclear Experimentexcited states
researchProduct

The FRS Ion Catcher

2013

At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass measurements and to provide an isobarically clean beam for further experiments, such as mass-selected decay spectroscopy. A versatile RF quadrupole transport and diagnostics unit guides the ions from the stopping cell to the MR-TOF-MS, provides differential pumping, ion identification and includes reference ion sources. The FRS Ion Catcher serves as a test facility for the Low-Energy Branch of the Sup…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsFissionMass spectrometry01 natural sciencesIonHEAVY-IONSNuclear physicsENERGYGSI0103 physical sciencesddc:530NuclideNuclear Experiment010306 general physicsInstrumentationSUPER-FRSDirect mass measurementta114010308 nuclear & particles physicsChemistryProjectileMultiple-reflection time-of-flight mass spectrometerExtraction timeTIMECryogenic gas-filled stopping cellQuadrupoleISOBAR-SEPARATIONFacility for Antiproton and Ion ResearchAtomic physicsProjectile fragmentationBeam (structure)Exotic nucleiSYSTEMNuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms
researchProduct

Isomeric states close to doubly magic $^{132}$Sn studied with JYFLTRAP

2012

The double Penning trap mass spectrometer JYFLTRAP has been employed to measure masses and excitation energies for $11/2^-$ isomers in $^{121}$Cd, $^{123}$Cd, $^{125}$Cd and $^{133}$Te, for $1/2^-$ isomers in $^{129}$In and $^{131}$In, and for $7^-$ isomers in $^{130}$Sn and $^{134}$Sb. These first direct mass measurements of the Cd and In isomers reveal deviations to the excitation energies based on results from beta-decay experiments and yield new information on neutron- and proton-hole states close to $^{132}$Sn. A new excitation energy of 144(4) keV has been determined for $^{123}$Cd$^m$. A good agreement with the precisely known excitation energies of $^{121}$Cd$^m$, $^{130}$Sn$^m$, an…

FOS: Physical sciencesExperimental nuclear physicsNuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct

High-precision mass measurements of 25Al and 30P at JYFLTRAP

2016

The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( $\Delta = -8915.962(63)$ keV) and 30P ( $\Delta = -20200.854(64)$ keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but $ \approx$ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al (p, $ \gamma$ )26Si and 30P(p, $ \gamma$ )31S . In this work, $ Q_{(p,\gamma)} = 5513.99(13)$ keV and $ Q_{(p,\gamma)} = 6130.64(24)$ keV were obtained for 25Al and 30P , respectivel…

Nuclear reactionNuclear and High Energy PhysicsmassaspektrometriaQ valueAstrophysics::High Energy Astrophysical PhenomenaastrofysiikkaHadronatomipainot01 natural sciencesNuclear physics0103 physical sciencesNuclear astrophysicsJYFLTRAPIsotopes of siliconalumiiniNuclear Experiment010306 general physicsfosforiPhysics010308 nuclear & particles physicsatomic massPenning trapAtomic masshigh-precision mass measurementAtomic physicsydinfysiikkaRadioactive decay
researchProduct

News on 12C from beta-decay studies

2004

We discuss the importance of the spectroscopic properties of the resonances of 12C just above the 3α-threshold, and review the existing experimental information of this region with emphasis on O+ and 2+ states. A new experimental approach for studying the β-decays of 12B and 12N is presented based on techniques developed in the context of Radioactive beam (rare isotope) physics. Finally preliminary results from an ongoing analysis of two recent experiments are given. © 2004 Published by Elsevier B.V.

Nuclear physicsPhysicsNuclear and High Energy PhysicsContext (language use)Radioactive beam
researchProduct

The shape transition in the neutron-rich yttrium isotopes and isomers

2007

Abstract Laser spectroscopy has been used to study 86–90,92–102Y and isomeric states of 87–90,93,96,97,98Y. Nuclear charge radii differences, magnetic dipole and electric quadrupole moments have been obtained. Information on the nature of the Z ≈ 40 , N ≈ 60 sudden onset of deformation has been derived from all three parameters. It is seen that with increasing neutron number from the N = 50 shell closure that the nuclear deformation becomes increasingly oblate and increasingly soft. At N = 60 a transition to a strongly deformed rigid prolate shape occurs but prior to this, although the nuclear deformation is increasing with N, a proportionate increase in softness is also observed.

Nuclear physicsYttrium IsotopesPhysicsNuclear and High Energy PhysicsNeutron numberNuclear TheoryQuadrupoleCharge densityNeutronDeformation (meteorology)Magnetic dipoleMolecular physicsEffective nuclear chargePhysics Letters B
researchProduct

Half-life, branching-ratio, andQ-value measurement for the superallowed0+→0+β+emitterTi42

2009

The half-life, the branching ratio, and the decay $Q$ value of the superallowed $\ensuremath{\beta}$ emitter $^{42}\mathrm{Ti}$ were measured in an experiment performed at the JYFLTRAP facility of the Accelerator Laboratory of the University of Jyv\"askyl\"a. $^{42}\mathrm{Ti}$ is the heaviest ${T}_{z}=\ensuremath{-}1$ nucleus for which high-precision measurements of these quantities have been tried. The half-life (${T}_{1/2}=208.14\ifmmode\pm\else\textpm\fi{}0.45$ ms) and the $Q$ value [${Q}_{\mathrm{EC}}=7016.83(25)$ keV] are close to or reach the required precision of about 0.1%. The branching ratio for the superallowed decay branch [$\mathrm{BR}=47.7(12)%$], a by-product of the half-lif…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsQ valueBranching fraction0103 physical sciencesHalf-lifeAtomic physics010306 general physics01 natural sciencesCommon emitterPhysical Review C
researchProduct

Studying exotic nuclides close to the N = Z line at the HIGISOL facility

2003

The ion guide [1, 2] for heavy-ion fusion-evaporation reactions (HIGISOL) which was developed by Beraud et al. [3] has been implemented at the IGISOL facility in Jyvaskyla [4]. This system was modified over the past 5 years. Figure 1 shows the present set-up. The HIGISOL takes advantage of the different angular distributions of primary beam and reaction products: the primary beam is stopped in front of the stopping chamber and the reaction products enter the stopping chamber through a thin foil passing the beam stop. This so called “shadow” method removes the plasma effect since the primary beam is not ionising the stopping gas. In order to improve ion optical properties, mainly to reduce t…

PhysicsNuclear physicsDc voltageIon beamPlasma effectSkimmer (machine)NuclideBeam (structure)Line (formation)Ion
researchProduct

R-matrix analysis of theβdecays ofN12andB12

2010

The β decays of 12N and 12B have been studied at KVI and JYFL to resolve the composition of the broad and interfering 0+ and 2+ strengths in the triple-α continuum. For the first time a complete treatment of 3α decay is presented including all major breakup channels. A multilevel, many-channel R-matrix formalism has been developed for the complete description of the breakup in combination with the recently published separate analysis of angular correlations. We find that, in addition to the Hoyle state at 7.65 MeV, more than one 0+ and 2+ state is needed to reproduce the spectra. Broad 03+ and 22+ states are found between 10.5 and 12 MeV in this work. The presence of β strength up to the 12…

Nuclear physicsPhysicsNuclear and High Energy PhysicsExcited stateDouble beta decayCarbon-12Isotopes of boronAlpha particleAtomic physicsRadioactive decaySpectral lineR-matrixPhysical Review C
researchProduct

Characterizing the atomic mass surface beyond the proton drip line viaα-decay measurements of theπs1/2ground state of165Re and theπh11/2isomer in161Ta

2012

The α-decay chains originating from the πs1/2 and πh11/2 states in 173Au have been investigated following fusion-evaporation reactions. Four generations of α radioactivities have been correlated with 173Aum leading to a measurement of the α decay of 161Tam. It has been found that the known α decay of 161Ta, which was previously associated with the decay of the ground state, is in fact the decay of an isomeric state. This work also reports on the first observation of prompt γ rays feeding the ground state of 173Au. This prompt γ radiation was used to aid the study of the α-decay chain originating from the πs1/2 state in 173Au. Three generations of α decays have been correlated with this stat…

PhysicsNuclear and High Energy PhysicsDecay schemeProton010308 nuclear & particles physicsBranching fraction01 natural sciencesAtomic mass0103 physical sciencesAlpha decayAtomic physicsGround state010303 astronomy & astrophysicsExcitationLine (formation)Physical Review C
researchProduct

High-precision mass measurements for the rp-process at JYFLTRAP

2017

The double Penning trap JYFLTRAP at the University of Jyvaskyla has been successfully used to achieve high-precision mass measurements of nuclei involved in the rapid proton-capture (rp) process. A precise mass measurement of 31 Cl is essential to estimate the waiting point condition of 30 S in the rp-process occurring in type I x-ray bursts (XRBs). The mass-excess of 31 C1 measured at JYFLTRAP, -7034.7(3.4) keV, is 15 more precise than the value given in the Atomic Mass Evaluation 2012. The proton separation energy S p determined from the new mass-excess value confirmed that 30 S is a waiting point, with a lower-temperature limit of 0.44 GK. The mass of 52 Co effects both 51 Fe( p,γ ) 52 C…

PhysicsIon Traps (Instrumentation)protonitProtonta114protons010308 nuclear & particles physicsPhysicsQC1-999Analytical chemistryAntiprotonsrp-processPenning trapatomipainot01 natural sciencesMass measurementAtomic massnukleonitnucleons0103 physical sciencesmassamass010306 general physicsAtomic Weights
researchProduct

Measurement of fission yields and isomeric yield ratios at IGISOL

2018

Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyväskylä, Finland, for such measurements on 232Th and natU targets. Previously published fission yield data from IGISOL concern the 232Th(p,f) and 238U(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range fr…

PhysicsAngular momentumisomerismIsotopeta114010308 nuclear & particles physicsFissionisomeriaPhysicsQC1-999Fission product yieldPenning trap01 natural sciences7. Clean energyIonNuclear physicsfissioYield (chemistry)0103 physical sciencesNeutron sourcefission010306 general physics
researchProduct

β Decay of 127Cd and Excited States in 127In

2019

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyväskylä. Following high-resolution mass separation in a Penning trap, β−γ−γcoincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2− states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(128)s and 0.36(4) s. The experimentally observed βfeeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations. peerReviewed

electromagnetic transitionsgamma-ray spectroscopynuclear shell modelPenning trapSubatomic Physicsshell modelisomer decaybeta decayydinfysiikkanuclear structure and decaysGamow-Teller strength
researchProduct

A radio frequency ring electrode cooler for low-energy ion beams

2004

We are investigating a new concept for ion confinement while buffer-gas-cooling low-energy ion beams. Instead of applying the well-established technique of Radio Frequency Quadrupoles (RFQs) where the ions are transversely confined by a quadratic-pseudo potential we are using a stack of thin ring electrodes supplied by an RF field (RF funnel) which creates a box-shaped potential well. In Monte Carlo simulations we have investigated the transmission behavior and cooling performance of the RF funnel. First experimental investigations with ion currents up to 20 nA revealed a promising transmission characteristic which qualifies the RF funnel as high-current cooler.

PhysicsNuclear and High Energy Physicsbusiness.product_categorybusiness.industryMonte Carlo methodRing (chemistry)IonNuclear magnetic resonanceTransmission (telecommunications)Stack (abstract data type)ElectrodeOptoelectronicsFunnelRadio frequencybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP

2019

The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…

EFFICIENCYrare and new isotopesastrofysiikkanuclear astrophysicsNuclear Theoryr processFOS: Physical sciencesnucl-ex01 natural sciences7. Clean energybinding energy and massesIonPENNING TRAPS0103 physical sciencesNuclear Physics - ExperimentNeutronNuclideIONNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentDETECTORPhysicsScience & TechnologySTABILITYIsotope010308 nuclear & particles physicsPhysicsR-PROCESSRAMSEY METHODPenning trapnuclear structure and decaysAtomic massNeutron capturePhysics NuclearSPECTROMETRY13. Climate actionPairingPhysical SciencesELECTRONAtomic physicsydinfysiikkaDECAYPhysical Review C
researchProduct

β-decay data requirements for reactor decay heat calculations: study of the possible source of the gamma-ray discrepancy in reactor heat summation ca…

2007

The decay heat of fission products plays an important role in predictions of the heat up of nuclear fuel in reactors. The released energy is calculated as the summation of the activities of allfission products P(t) = Ei λi Ni(t), where Ei is the decay energy of nuclide i (gamma and beta component), λi is the decay constant of nuclide i and Ni(t) is the number of nuclide i at cooling time t. Even though the reproduction of the measured decay heat has improved in recent years, there is still a long standing discrepancy in the t ∼ 1000s cooling time for some fuels. A possible explanation to this improper description has been found in the work of Yoshida et al. (1), where it has been shown that…

Nuclear physicsFission productsIsotopeDecay energyChemistryGamma rayNuclear dataNuclideExponential decayDecay heatNuclear ExperimentND2007
researchProduct

In-trap conversion electron spectroscopy

2002

The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line and tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future.

PhysicsTrap (computing)Condensed Matter::Quantum GasesNuclear and High Energy PhysicsElectronPhysics::Atomic PhysicsAtomic physicsSpectroscopyPenning trapInstrumentationElectron spectroscopyAccelerators and Storage RingsIon
researchProduct

A facility for production and laser cooling of cesium isotopes and isomers

2018

We report on the design, installation, and test of an experimental facility for the production of ultra-cold atomic isotopes and isomers of cesium. The setup covers a broad span of mass numbers and nuclear isomers, allowing one to directly compare chains of isotopes and isotope/isomer pairs. Cesium nuclei are produced by fission or fusion-evaporation reactions using primary proton beams from a 130 MeV cyclotron impinging upon a suitable target. The species of interest is ejected from the target in ionic form, electrostatically accelerated, mass separated, and routed to a science chamber. Here, ions are neutralized by implantation in a thin foil, and extracted by thermal diffusion. A neutral…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsProtonCesium IsotopesAtomic Physics (physics.atom-ph)FissiontutkimuslaitteetCyclotronFOS: Physical scienceschemistry.chemical_element7. Clean energy01 natural sciencesPhysics - Atomic Physicslaw.inventionIonlaser coolinglawLaser cooling0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentInstrumentationPhysicsultra-cold nucleita114Isotope010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)3. Good healthchemistryCaesiumAtomic physicsydinfysiikkaisotopes and isomersNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Medium-spin structure of neutron-rich Pd and Cd isotopes

2003

Cadmium isotopes are traditionally considered as good examples of nearly spherical, vibrational nuclei, which can be described by quadrupole vibrators in the collective model, as well as the U(5) dynamical symmetry in the interacting boson model (IBM). However, the shape coexistence of more deformed intruder states originating from proton 2p–4h excitation across the Z = 50 major shell is another interesting structural aspect, whose presence in Pd-isotopes has also been demonstrated [1,2].

PhysicsProtonIsotopes of cadmiumQuadrupoleShell (structure)NeutronInteracting boson modelSpin structureAtomic physicsNuclear ExperimentExcitation
researchProduct

Beta decay of neutron-rich 118Rh and the lowest excited states in 118Pd

2000

Beta decay of a refractory isotope 118Rh produced in symmetric fission and mass separated by the ion guide technique has been applied for the study of low-lying excited states of 118Pd. The yrast band in 118Pd has been observed up to a 6+ state and the lowest states of the asymmetric γ-band have been identified. The measured half-life of 118Rh is (300±60)ms. The systematics of the excited states in neutron-rich Pd-isotopes implies the saturation towards an O(6) symmetry at N = 70.

PhysicsNuclear and High Energy PhysicsDecay schemeIsotopeFissionYrastExcited stateHadronNeutronAtomic physicsNuclear ExperimentBeta decayThe European Physical Journal A
researchProduct

Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

2016

Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of natUnatU were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of natUnatU were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. peerReviewed

proton-induced fissionisotopic yieldsNuclear Experiment
researchProduct

Feasibility of In-Trap Conversion Electron Spectroscopy

2001

We have used REXTRAP at ISOLDE to test the feasibility of in-trap electron spectroscopy. The results of calculations, experiments with various electron sources as well as a first test with trapped radioactive ions are presented.

Condensed Matter::Quantum GasesTrap (computing)ChemistryPhysics::Accelerator PhysicsPhysics::Atomic PhysicsElectronAtomic physicsNuclear ExperimentElectron spectroscopyIon
researchProduct

Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes

2018

Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm $5s\phantom{\rule{0.16em}{0ex}}^{2}S_{1/2}\ensuremath{\rightarrow}5p\phantom{\rule{0.16em}{0ex}}^{2}P_{1/2}$ line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyv\"askyl\"a, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-p…

PhysicsIsotopeta114010308 nuclear & particles physicsinterdisciplinary physicschemistry.chemical_elementOrder (ring theory)Yttrium01 natural sciences7. Clean energyIonYttrium Isotopeschemistrynuclear physics0103 physical sciencesProduction (computer science)fine and hyperfine structureAtomic physics010306 general physicsSpectroscopyydinfysiikkaLine (formation)
researchProduct

Development of a New Clusterization Method for the GEM-TPC Detector

2022

The Facility for Antiproton and Ion Research FAIR, in Darmstadt Germany, will be one of the largest accelerator laboratories worldwide. The Superconducting FRagment Separator (Super-FRS)* is one of its main components. The Super-FRS can produce, separate and deliver high-energy radioactive beams with intensities up to 1e11 ions/s, covering projectiles from protons up to uranium and it can be used as an independent experimental device. The Gas Electron Multiplier-based Time Projection Chambers (GEM-TPC) in twin configuration is a newly developed beam tracking detector capable of providing spatial resolution of less than 1 mm with a tracking efficiency close to 100% at 1 MHz counting rate. Th…

electrondetectorexperimentPhysics::Instrumentation and DetectorselectronicsPhysics::Accelerator PhysicsNuclear Experiment114 Physical sciencesAccelerator PhysicsMC6: Beam Instrumentation Controls Feedback and Operational AspectsECR
researchProduct

Excited levels in the multishaped 117Pd nucleus studied via β decay of 117Rh

2018

Monoisotopic samples of exotic, neutron-rich 117Rh nuclei, produced in the proton-induced fission of 238U and separated using the IGISOL mass separator coupled to the JYFLTRAP Penning trap, were used to perform β and γ coincidence spectroscopy of 117Pd. The spin parity of the ground state of 117Pd was determined to be 1/2+ and the 19.1 ms isomer at 203.2 keV was assigned a spin-parity 7/2−. The 117Rh β−-decay scheme was considerably extended, and various sequences of the levels were interpreted as resulting from the prolate, oblate, and triaxial nuclear shapes. Some of the β− decays were considered as the allowed Gamow-Teller transitions. The experimental distribution of Gamow-Teller streng…

isotoopitrare and new isotopesNuclear Theorybeta decayNuclear Experimentisomer decaysydinfysiikkapalladiumnuclear structure and decays
researchProduct

Precision mass measurements of neutron-rich yttrium and niobium isotopes

2007

Abstract The atomic masses of neutron-rich 95–101 Y and 101–107 Nb produced in proton-induced fission of uranium were determined using the JYFLTRAP double Penning trap setup. Accuracies of better than 10 keV could be reached for most nuclides. The masses of 106,107 Nb were measured for the first time. The energies of the isomeric states in 96 Y and 100 Y were measured as 1541(10) keV and 145(15) keV. The niobium isotopes appear to be systematically less bound than the values given in the latest Atomic Mass Evaluation. The new data lie in a region of the nuclear chart characterised by the transition from spherical to strongly deformed shapes. These structural changes are explored by studying…

PhysicsNuclear and High Energy PhysicsIsotopeNiobiumchemistry.chemical_elementYttriumUraniumPenning trapAtomic massNuclear physicschemistryNeutronNuclideAtomic physicsNuclear ExperimentNuclear Physics A
researchProduct

MONSTER: a time of flight spectrometer for β-delayed neutron emission measurements

2012

The knowledge of the β-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the β-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (Sβ) function. In addition, β-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future …

PhysicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNeutron scatteringNeutron temperatureNuclear physicsNeutron cross sectionNeutron sourcer-processNeutron detectionNeutronNuclear ExperimentInstrumentationMathematical PhysicsJournal of Instrumentation
researchProduct

Mass Measurements for the rp Process

2017

One of the key parameters for the reaction network calculations for the rapid proton capture (rp) process, occurring e.g., in type I X-ray bursts, are the masses of the involved nuclei. Nowadays, masses of even rather exotic nuclei can be measured very precisely employing Penning-trap mass spectrometry. With the JYFLTRAP Penning trap at the IGISOL facility, masses of around 100 neutron-deficient nuclei have been determined with a typical precision of a few keV. Most recently, 25Al, 30P, 31Cl, and 52Co have been measured. Of these, the precision of the mass-excess value of 31Cl was improved from 50 to 3.4 keV, and the mass of 52Co was experimentally determined for the first time. The mass of…

Penning-trap mass spectrometrynovae rp processatomic masses
researchProduct

βdecay of neutron-rich118Agand120Agisotopes

2003

$\ensuremath{\beta}$ decays of on-line mass-separated neutron-rich ${}^{118}\mathrm{Ag}$ and ${}^{120}\mathrm{Ag}$ isotopes have been studied by using $\ensuremath{\beta}\ensuremath{-}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{-}\ensuremath{\gamma}$ coincidence spectroscopy. Extended decay schemes to the ${}^{118,120}\mathrm{Cd}$ daughter nuclei have been constructed. The three-phonon quintuplet in ${}^{118}\mathrm{Cd}$ is completed by including a new level at 2023.0 keV, which is tentatively assigned the spin and parity of ${2}_{4}^{+}.$ The intruder band in ${}^{118}\mathrm{Cd}$ is proposed up to the ${4}^{+}$ level at 2322.4 keV. The measured $\ensuremath{\beta}$-decay half…

PhysicsNuclear and High Energy PhysicsProtonIsotopeQuadrupoleNeutronAtomic physicsSpin (physics)Physical Review C
researchProduct

Mass Measurements and Implications for the Energy of the High-Spin Isomer inAg94

2008

Nuclides in the vicinity of {sup 94}Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter {sup 92}Rh and the beta-decay daughter {sup 94}Pd of the high-spin isomer in {sup 94}Ag have been measured, and the masses of {sup 93}Pd and {sup 94}Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in {sup 94}Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

PhysicsNuclear physicsMass excessIsotopeAnalytical chemistryGeneral Physics and AstronomyNuclideSpin (physics)Penning trapMass spectrometryBeta decayExcitationPhysical Review Letters
researchProduct

Isomers of astrophysical interest in neutron-deficient nuclei at masses A = 81, 85 and 86

2005

Decay properties of neutron-deficient exotic nuclei close to A=80 have been investigated at the IGISOL facility. The studied nuclei, 81Y, 81Sr, 81mKr, 85Nb, 85Zr, 86Mo and 86Nb, were produced by a 32S beam from the Jyväskylä isochronous cyclotron on 54Fe and natNi targets. The internal conversion coefficient for a 190.5 keV isomeric transition in 81mKr has been measured and the internal transition rate has been determined. The internal transition rate has been used to estimate a neutrino capture rate on 81Br, which yields a log ft of 5.13±0.09 for the reaction 81Br( ν, e-)81mKr. A new isomer with a half-life of 3.3±0.9 s has been observed in 85Nb. The existence of an earlier reported isomer…

nukliditnuclides
researchProduct

α decay of the πh11/2 isomer in Ir164

2014

The α -decay branch of the πh 11 / 2 isomer in 164 Ir has been identified using the GREAT spectrometer. The 164 Ir nuclei were produced using the 92 Mo( 78 Kr ,p 5 n ) 164 Ir reaction and separated in flight using the recoil ion transport unit (RITU) gas-filled separator. The measured α -decay energy of 6880 ± 10 keV allowed the excitation of the πh 11 / 2 state in 160 Re to be deduced as 166 ± 14 keV. The half-life of 164 Ir was measured with improved precision to be 70 ± 10 μ sandan α -decay branching ratio of 4 ± 2% was determined. Improved half-life and branching ratio measurements were also obtained for 165 Ir, but no evidence was found for the ground-state decays of either 164 Ir or 1…

neutron-deficent isotopesenergianuclear-structuremodeltotal data readout. proton drip-lineemissionrituosmiumvolframi
researchProduct

The β-decay approach for studying 12C

2008

6 pags., 3 figs. -- 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07) 3–7 September 2007, Stratford upon Avon, UK

HistoryChemistryDetectorCoincidenceComputer Science ApplicationsEducationNuclear physicsmedicine.anatomical_structuremedicineMirror nucleiAtomic physicsSpin (physics)NucleusEnergy (signal processing)Journal of Physics: Conference Series
researchProduct

A new off-line ion source facility at IGISOL

2019

An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion beams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.

Radioactive ion beamsNuclear and High Energy PhysicsTechnologyPhysics - Instrumentation and DetectorsMaterials sciencetutkimuslaitteetFOS: Physical sciencesSeparator (oil production)Physics Atomic Molecular & Chemical01 natural sciencesIonNuclear physicsPhysics::Plasma Physics0103 physical sciencesAtomPhysics::Atomic PhysicsIGISOLNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsSpectroscopyNuclear Science & TechnologyDischarge ion sourceNuclear ExperimentInstrumentationInstruments & InstrumentationScience & TechnologyIsotope010308 nuclear & particles physicsPhysicsInstrumentation and Detectors (physics.ins-det)Ion sourcePhysics NuclearPhysical SciencesPhysics::Accelerator PhysicsydinfysiikkaOff lineSurface ion source
researchProduct

Reactor Decay Heat inPu239: Solving theγDiscrepancy in the 4–3000-s Cooling Period

2010

The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.

Nuclear physicsPhysicsDouble beta decayGeneral Physics and AstronomyOrder (ring theory)Isobaric processAbsorption (logic)Atomic physicsDecay heatPenning trapBeta decayParticle detectorPhysical Review Letters
researchProduct

High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL

2019

An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an $^{36}\mathrm{Ar}$ beam on a $^{\mathrm{nat}}\mathrm{Ni}$ target. It was used together with the JYFLTRAP double Penning trap to measure the masses of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}, ^{86}\mathrm{Mo}, ^{88}\mathrm{Tc}$, and $^{89}\mathrm{Ru}$ ground states and the isomeric state $^{88}\mathrm{Tc}^{m}$. Of these, $^{89}\mathrm{Ru}$ and $^{88}\mathrm{Tc}^{m}$ were measured for the first time. The precision of measurements of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}$, and $^{88}\mathrm{Tc}$ was significantly improved. The literature value for $^…

RPPHASEONLINE7. Clean energy01 natural sciences114 Physical sciencesbinding energy and massesPENNING TRAPS0103 physical sciencesNeutron010306 general physicsNuclear ExperimentPhysicsisotoopitSpinsIsotope010308 nuclear & particles physicsenergy levels and level densitiesRAMSEY METHODGAMMAPenning trapAtomic massSPECTROMETRYProduction (computer science)Heavy ionlow and intermediate energy heavy-ion reactionsAtomic physicsydinfysiikkaNUCLEAR-MASSESBeam (structure)Physical Review C
researchProduct

Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data

2020

For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…

Fission productsMaterials scienceFissionPhysicsQC1-999Buffer gasNuclear Theorychemistry.chemical_elementFission product yieldIonNuclear physicsSubatomär fysikchemistryPhysics::Plasma PhysicsYield (chemistry)Subatomic PhysicsNeutronNuclear ExperimentHeliumEPJ Web of Conferences
researchProduct

Status of the ion trap project at IGISOL

2001

The IGISOL fa ility at the Department of Physi s of the University of Jyväskylä (JYFL) is delivering radioa tive beams of short-lived exoti nu lei, in parti ular the neutron-ri h isotopes from the ssion rea tion. These nu lei are studied with the nu lear spe tros opy methods. In order to substantially in rease the quality and sensitivity of su h studies the beam should undergo beam handling: ooling, bun hing and isobari puri ation. The rst two pro esses are performed with the use of an RFQ ooler/bun her. The isobari puri ation will be made by a Penning trap pla ed after the RF- ooler element. This ontribution des ribes the urrent status of the ion trap pro je t and its future prospe ts. The…

IGISOL
researchProduct

First β -decay scheme of Nb107 : New insight into the low-energy levels of Mo107

2019

Monoisotopic samples of $^{107}\mathrm{Nb}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of $^{107}\mathrm{Mo}$. Gamma transitions and excited levels in $^{107}\mathrm{Mo}$ were observed in $\ensuremath{\beta}$ decay for the first time. Spin and parity $1/{2}^{+}$ for the ground state of $^{107}\mathrm{Mo}$ is proposed, to replace the previous $5/{2}^{+}$ assignment. The experimental $\ensuremath{\beta}$-decay half-life of $^{107}\mathrm{Nb}$ was estimated to be $0.27\ifmmode\pm\else\textpm\fi{}0.02$ s.

PhysicsDecay scheme010308 nuclear & particles physicsFissionPenning trap01 natural sciencesLow energyExcited state0103 physical sciencesAtomic physics010306 general physicsSpin (physics)Ground stateSpectroscopyPhysical Review C
researchProduct

Influences on the triple alpha process beyond the Hoyle state

2010

7 pags., 3 figs. -- International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, 25-30 June 2006, CERN

Nuclear physicsPhysicsParticle physicsAstrophysics and AstronomyLarge Hadron ColliderNuclear astrophysicsState (functional analysis)Triple-alpha process
researchProduct

First evidence of multiple β-delayed neutron emission for isotopes with a > 100

2017

The β-delayed neutron emission probability, Pn, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which β-delayed one-neutron emission (β1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. β1n decays have been experimentally measured up to the mass A ∼ 150, plus a single measurement of 210Tl. Concerning two-neutron emitters (β2n), ∼ 300 isotopes are …

neutron-rich nucleiAstrophysics::High Energy Astrophysical PhenomenaNuclear Theorynuclear structureNuclear Experimentbeta-delayed neutron emission
researchProduct

On the decrease in charge radii of multi-quasi particle isomers

2007

Abstract We report changes in mean-square charge radii, δ 〈 r 2 〉 , magnetic moments and quadrupole moments for three multi-quasi particle isomers; 97m2Y, 176mYb and 178m1Hf. All the isomers are observed to display a decrease in 〈 r 2 〉 compared to the lower-lying nuclear state on which the isomer is built. The decreases in 〈 r 2 〉 occur despite the isomers showing increases in quadrupole moment. Possible mechanisms for the effect, which is now seen for six multi-quasi particle isomers, are discussed.

PhysicsNuclear and High Energy PhysicsMagnetic momentNuclear stateQuadrupoleQuasiparticleCharge densityParticleCharge (physics)Atomic physicsSpectroscopyPhysics Letters B
researchProduct

Precision Mass Measurements beyondSn132: Anomalous Behavior of Odd-Even Staggering of Binding Energies

2012

Atomic masses of the neutron-rich isotopes $^{121--128}\mathrm{Cd}$, $^{129,131}\mathrm{In}$, $^{130--135}\mathrm{Sn}$, $^{131--136}\mathrm{Sb}$, and $^{132--140}\mathrm{Te}$ have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four $r$-process nuclei $^{135}\mathrm{Sn}$, $^{136}\mathrm{Sb}$, and $^{139,140}\mathrm{Te}$ were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N=82$ for Sn, with a $Z$ dependence that is unexplainable by the current theoretical models.

QuenchingPhysicsIsotopePairingBinding energyTheoretical modelsGeneral Physics and AstronomyNeutronPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentMass spectrometryAtomic massPhysical Review Letters
researchProduct

Spectroscopy of193Bi

2014

An experiment aiming to study the shape coexistence in 193Bi has been performed at the Accelerator laboratory of the University of Jyväskylä, Finland (JYFL). Many new states have been found, hugely extending the previously known level scheme of 193Bi. The Iπ=292+${I^\pi } = {{{29} \over 2}^ + }$ member of the πi13/2 band de-excites also to the previously, only tentatively placed long-lived isomeric state. This link determines the energy of the isomeric state to be 2260(1) keV and suggests a spin and parity of (272+)$\left( {{{{{27} \over 2}}^ + }} \right)$. The half-life of the isomeric state was measured to be 84.4(6) µs. A level structure on top of this isomeric state was constructed. How…

Physicsta114IsotopePhysicsQC1-999Level structureParity (physics)Statistical physicsAtomic physicsSpectroscopyEPJ Web of Conferences
researchProduct

Precise branching ratios to unbound 12C states from 12N and 12B β-decays

2009

6 pages, 2 tables, 4 figures.--PACS nrs.: 21.45.-v; 23.40.-s; 27.20.+n; 21.60.De.--Printed version published Aug 3, 2009

branching ratiosPhysicsNuclear and High Energy PhysicsChiral perturbation theory[PACS] β decayBranching fractionNuclear shell model[PACS] Ab initio methods[PACS] β decay; double β decay; electron and muon captureAlpha particleFew-body systems[PACS] Few-body systemselectron and muon capturedouble β decay6 ≤ A ≤ 19 [[PACS] Properties of specific nuclei listed by mass ranges]Double beta decayExcited stateAtomic physics[PACS] Properties of specific nuclei listed by mass ranges: 6 ≤ A ≤ 19Nucleonbeta-decayC12
researchProduct

r Process (n, γ) Rate Constraints from the γ Emission of Neutron Unbound States in β decay

2017

Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γγ emission from neutron-unbound states populated in the ββ-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission a constraint on the (n, γγ) cross section for highly unstable neutron-rich nuclei can be deduced. A surprisingly large γγ branching was observed for a number of isotopes which might indicate the need to increase by a large factor the Hauser-Feshbach (n, γγ) cross-section estimates that impact on r process abundance calculations. peerReviewed

total absorption gamma-ray spectroscopybeta-delayed neutron emittersAstrophysics::High Energy Astrophysical Phenomenar-processutron-capture ratesNuclear Experiment
researchProduct

Mass of astrophysically relevantCl31and the breakdown of the isobaric multiplet mass equation

2016

The mass of $^{31}\mathrm{Cl}$ has been measured with the JYFLTRAP double-Penning-trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, $\ensuremath{-}7034.7(34)$ keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the $T=3/2$ quartet at $A=31$ fails $({\ensuremath{\chi}}_{n}^{2}=11.6)$ and a nonzero cubic term, $d=\ensuremath{-}3.5(11)$ keV, is obtained when the new mass value is adopted. $^{31}\mathrm{Cl}$ has been found to be less proton-bound, with a proton separation energy of ${S}_{p}=264.6(34)$ keV. Energies for the excited states in $^{31…

PhysicsProton010308 nuclear & particles physicsQuadratic form (statistics)Type (model theory)7. Clean energy01 natural sciencesAtomic massNuclear physicsMass formulaPhotodisintegration0103 physical sciencesAtomic physicsNuclear Experiment010306 general physicsMultipletEnergy (signal processing)Physical Review C
researchProduct

Experimental investigation of the 02+ band in Sm154 as a β-vibrational band

2014

Abstract A study of Sm 154 through γ -ray and internal conversion electron coincidence measurements was performed using the Silicon And GErmanium spectrometer (SAGE). An upper limit for the ρ 2 ( E 0 ; 2 2 + → 2 1 + ) and measurement of the ρ 2 ( E 0 ; 4 2 + → 4 1 + ) monopole transitions strengths were determined. The extracted transition strength for each is significantly lower than that predicted by either the Bohr and Mottelson β -vibration description or the interacting boson model. Hence, the long standing interpretation of these states as a collective band built on the 0 2 + state, which is conventionally assigned as a Bohr and Mottelson β vibration is questionable.

PhysicsNuclear and High Energy PhysicsSilicon010308 nuclear & particles physicsGamma raychemistry.chemical_elementGermaniumElectron01 natural sciencesBohr modelsymbols.namesakeInternal conversionchemistry0103 physical sciencessymbolsInteracting boson modelAtomic physics010306 general physicsSpectroscopyPhysics Letters B
researchProduct

Hindered Gamow-Teller Decay to the Odd-OddN=ZGa62: Absence of Proton-NeutronT=0Condensate inA=62

2014

Search for a new kind of superfluidity built on collective proton-neutron pairs with aligned spin is performed studying the Gamow-Teller decay of the T=1, Jπ=0+ ground state of Ge62 into excited states of the odd-odd N=Z nucleus Ga62. The experiment is performed at GSI Helmholtzzentrum fur Schwerionenforschung with the Ge62 ions selected by the fragment separator and implanted in a stack of Si-strip detectors, surrounded by the RISING Ge array. A half-life of T1/2=82.9(14) ms is measured for the Ge62 ground state. Six excited states of Ga62, populated below 2.5 MeV through Gamow-Teller transitions, are identified. Individual Gamow-Teller transition strengths agree well with theoretical pred…

PhysicsProtonDouble beta decayExcited stateNuclear TheoryQuasiparticleGeneral Physics and AstronomyNeutronAtomic physicsNuclear ExperimentRandom phase approximationGround stateSpin (physics)Physical Review Letters
researchProduct

Recent mass measurements for the r process at JYFLTRAP

2013

Nuclear physicsPhysicsr-processProceedings of XII International Symposium on Nuclei in the Cosmos — PoS(NIC XII)
researchProduct

Mass Measurements for the rp Process

2017

Penning-trap mass spectrometrynovaePhysicsatomic massesChromatographyta114010308 nuclear & particles physicsrp process0103 physical sciencesrp-process010306 general physics01 natural sciencesProceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016)
researchProduct

Status of HIGISOL a new version equipped with SPIG and electric field guidance

2001

A new HIGISOL chamber devoted to the study of short-lived products from heavy-ion-induced fusion-evaporation reactions is proposed. It enables, via the extraction of ions by means of a SPIG (SextuPole rf Ion Guide), to improve the mass resolving power by a factor 2.5 compared to the previous system using a skimmer-ring assembly. The gas cell was also equiped with an electric field for faster transportation of recoiling ions to the nozzle where they are ejected with the gas jet. The first results obtained both with a radioactive α-source and cyclotron beam will be reported.

Jet (fluid)Field (physics)[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]ChemistryNuclear engineeringNozzleCyclotron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energy030218 nuclear medicine & medical imagingIonlaw.inventionNuclear physics03 medical and health sciences0302 clinical medicinePhysics::Plasma PhysicslawElectric field0103 physical sciencesNuclear spectroscopy010306 general physicsBeam (structure)
researchProduct

Excited levels in the multishaped Pd117 nucleus studied via β decay of Rh117

2018

Monoisotopic samples of exotic, neutron-rich $^{117}\mathrm{Rh}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to the JYFLTRAP Penning trap, were used to perform $\ensuremath{\beta}$ and $\ensuremath{\gamma}$ coincidence spectroscopy of $^{117}\mathrm{Pd}$. The spin parity of the ground state of $^{117}\mathrm{Pd}$ was determined to be $1/{2}^{+}$ and the 19.1 ms isomer at 203.2 keV was assigned a spin-parity $7/{2}^{\ensuremath{-}}$. The $^{117}\mathrm{Rh}$ ${\ensuremath{\beta}}^{\ensuremath{-}}$-decay scheme was considerably extended, and various sequences of the levels were interpreted as resulting from the prol…

Physics010308 nuclear & particles physicsFissionNuclear TheoryParity (physics)Penning trap01 natural sciencesmedicine.anatomical_structureExcited state0103 physical sciencesmedicineAtomic physicsNuclear Experiment010306 general physicsGround stateSpectroscopySpin (physics)NucleusPhysical Review C
researchProduct

Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases

2018

9 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

Nuclear fission product[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FissionQC1-999Nuclear Theory114 Physical sciences01 natural sciences7. Clean energyNuclear physics0103 physical sciencesSPECTROMETERGamma spectroscopyDecay heat010306 general physicsNuclear ExperimentPhysics[PHYS]Physics [physics]Fission products010308 nuclear & particles physicsPhysicsNuclear dataFísica nuclearHigh Energy Physics::ExperimentDelayed neutronRadioactive decay
researchProduct

First experimental results of a cryogenic stopping cell with short-lived, heavy uranium fragments produced at 1000 MeV/u

2013

A cryogenic stopping cell (CSC) has been commissioned with U-238 projectile fragments produced at 1000 MeV/u. The spatial isotopic separation in flight was performed with the FRS applying a monoenergetic degrader. For the first time, a stopping cell was operated with exotic nuclei at cryogenic temperatures (70 to 100K). A helium stopping gas density of up to 0.05mg/cm(3) was used, about two times higher than reached before for a stopping cell with RF ion repelling structures. An overall efficiency of up to 15%, a combined ion survival and extraction efficiency of about 50%, and extraction times of 24ms were achieved for heavy a-decaying uranium fragments. Mass spectrometry with a multiple-r…

Materials scienceGeneral Physics and Astronomychemistry.chemical_elementMass spectrometry7. Clean energy01 natural sciencesIonNuclear physicsENERGYGSIION-OPTICAL SYSTEMS0103 physical sciencesddc:530010306 general physicsSpectroscopySUPER-FRSHeliumSHIPTRAPCATCHER010308 nuclear & particles physicsProjectileExtraction (chemistry)UraniumBEAMSTIMEchemistryFLIGHT MASS-SPECTROMETRYMATTEROverall efficiencyEurophysics Letters
researchProduct

Investigation into the Effects of Deformation on Proton Emission Rates via Lifetime Measurements

2014

Materials scienceProton emissionDeformation (meteorology)Molecular physicsExotic Nuclei
researchProduct

Properties of the 12C 10 MeV state determined through β-decay

2005

16 pages, 1 table, 10 figures.-- PACS nrs.: 23.40.-s; 26.20.+f; 27.20.+n.-- Printed version published Oct 3, 2005.

PhysicsNuclear and High Energy Physics[PACS] β decayDeduced spin and parity of levels in C-12[PACS] β decay; double β decay; electron and muon captureParity (physics)Alpha particleRadioactivity Be-12(β-) B-12(β(-)3α) [produced in Ta(p X)]Inelastic scatteringBeta decayelectron and muon captureParticle decayMeasured α-particle coincidencesR-matrix analysisdouble β decay6 ≤ A ≤ 19 [[PACS] Properties of specific nuclei listed by mass ranges]Double-sided Si strip detectorDouble beta decay[PACS] Properties of specific nuclei listed by mass ranges: 6 ≤ A ≤ 19Atomic physics[PACS] Hydrostatic stellar nucleosynthesisExcitationCoincidence detection in neurobiologyNuclear Physics A
researchProduct

Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements

2011

The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaeskylae, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat sum…

Nuclear physicsFission productsMaterials scienceNuclear fuelIsotopeSpectrometerIsotopes of samariumGeneral Physics and AstronomyGamma spectroscopyDecay heatNuclear ExperimentPenning trapJournal of the Korean Physical Society
researchProduct

β-decay ofO13

2005

The beta decay of O-13 has been studied at the IGISOL facility of the Jyvaskyla accelerator centre (Finland). By developing a low-energy isotope-separated beam of O-13 and using a modern segmented charged-particle detector array an improved measurement of the delayed proton spectrum was possible. Protons with energy up to more than 12 MeV are measured and the corresponding log(ft) values extracted. A revised decay scheme is constructed. The connection to molecular states and the shell model is discussed.

Nuclear physicsPhysicsNuclear and High Energy PhysicsDecay schemeInternal conversionProtonDouble beta decayPhysics::Accelerator PhysicsNeutronNuclear drip lineNuclear ExperimentBeta decayRadioactive decayPhysical Review C
researchProduct

MONSTER: a TOF Spectrometer for beta-delayed Neutron Spectroscopy

2014

β-delayed neutron (DN) data, including emission probabilities, Pn, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

PhysicsNuclear and High Energy PhysicsSpectrometerta114Nuclear TheoryNeutron stimulated emission computed tomographyNeutron scatteringNeutron temperatureNeutron time-of-flight scatteringNeutron spectroscopyNuclear physicsNeutron cross sectionNeutronNuclear ExperimentNuclear Data Sheets
researchProduct

Production of Sn and Sb isotopes in high-energy neutron induced fission of natU

2018

The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyväskylä, Finland. The fission products from high-energy neutron-induced fission of nat U were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133 , were transported to a tape-implantation station and identified using γ -spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a …

Nuclear reactionPhysicsNuclear and High Energy PhysicsFission products010308 nuclear & particles physicsFissionIsotopes of samariumFission product yield01 natural sciences7. Clean energyFast fissionNuclear physicsSubatomär fysikneutron-induced fission yields0103 physical sciencesIsotopes of tinSubatomic PhysicsNeutronsystematic measurement010306 general physics
researchProduct

New levels in 118Pd observed in the beta-decay of very neutron-rich 118Rh isotope

2006

We investigate the β decay of very neutron-rich 118Rh isotope using on-line mass-separated sources which are produced by applying 25 MeV proton induced symmetric fission of natural uranium at the IGISOL facility. The β–γ and γ–γ coincidence spectroscopy is employed to establish the level scheme of daughter nucleus 118Pd. Five low-lying new levels are identified for the first time with tentative spin and parity assignments based on the even-mass Pd systematics.

PhysicsIsotopeFissionNuclear TheoryGeneral Physics and AstronomyNatural uraniumBeta decayCoincidenceNuclear physicsmedicine.anatomical_structuremedicineNeutronNuclear ExperimentSpectroscopyNucleus
researchProduct

Masses of neutron-rich Ni and Cu isotopes and the shell closure at Z = 28 , N = 40

2007

The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion Guide Isotope Separator On-Line (IGISOL) facility at Jyvaskyla, was employed to measure the atomic masses of neutron-rich 70-73Ni and 73, 75Cu isotopes with a typical accuracy less than 5keV. The mass of 73Ni was measured for the first time. Comparisons with the previous data are discussed. Two-neutron separation energies show a weak subshell closure at 68 28Ni40 . A well established proton shell gap is observed at Z = 28 .

PhysicsNuclear and High Energy PhysicsProtonIsotopePenning trapMass spectrometryAtomic massIonNuclear physicsNuclear fusionNeutronPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentThe European Physical Journal A
researchProduct

Detailed spectroscopy of 193Bi

2015

An experiment aiming to study shape coexistence in 193Bi has been performed. Due to its transitional character, it has an exceptionally large number of structures identified close to the yrast line. Many new states have been found, significantly extending the previously known level scheme of 193Bi, including several new rotational bands. The π i13/2 band was extended to I π = 45/2+. The I π = 31/2+ member of the π i13/2 band was found to de-excite also to a long-lived isomeric state. This isomeric state is located at 2350 keV and has a spin and parity of 29/2+. The half-life of the isomeric state was measured to be 85(3) μs and it decays via the emission of an 84 keV E2 transition. A level …

nuclear spectroscopyvismutti
researchProduct

Spectroscopy of 193Bi

2014

spektroskopiashape coexistence
researchProduct

Characterization and performance of the DTAS detector

2018

11 pags., 16 figs., 3 tabs.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodspektrometritβ decayFOS: Physical sciencesNon-proportional scintillation light yield: Monte Carlo simulationsMonte Carlo simulations [Non-proportional scintillation light yield]y-ray spectrometerB decay[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesMonte Carlo simulationsOpticsDistortion0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsAbsorption (electromagnetic radiation)Nuclear ExperimentInstrumentation[formula omitted] decayNuclear ExperimentPhysicsta114Spectrometer010308 nuclear & particles physicsbusiness.industryNaI(Tl) detectorPulse generatorTotal absorption [formula omitted]-ray spectrometerDetectornon-proportional scintillation light yieldInstrumentation and Detectors (physics.ins-det)Total absorption γ -ray spectrometerNon-proportional scintillation light yieldFísica nuclearTotal absorptionydinfysiikkabusinessDelayed neutronExotic nucleiNuclear instruments & methods inphysics research section A: Accelerators spectrometers detectors and associated equipment 910: 79-89 (2018)
researchProduct

Precision 71Ga – 71Ge mass-difference measurement

2016

The 71Ga(νe, e−) 71Ge reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyv¨askyl¨a to Q = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in 71Ga. peerReviewed

mass measurementsQ value for solar-neutrino capture rates
researchProduct

Isomeric state of 80Y and its role in the rp-process

2003

The HIGISOL facility has been used to investigate carefully the isomeric transition 228.5 keV in 80Y. We have measured the electron internal conversion coefficient for this transition αK = 0.50 ± 0.07 which gives the value for half-life of “bare” isomeric state T 1/2 = 6.8 ± 0.5 s. The isomeric state should play an important role in the rp-process calculations.

Materials scienceThermodynamicsElectronState (functional analysis)rp-processNuclear isomerInternal conversion coefficientValue (mathematics)
researchProduct

The MARA-LEB ion transport system

2020

A low-energy branch is under development for the MARA vacuum-mode recoil separator at the Accelerator Laboratory of the University of Jyväskylä. This development will allow for the study of proton-rich nuclei through laser ionisation spectroscopy and mass measurements. After stopping and extraction from a buffer gas cell, the ions of interest will be accelerated and transported to dedicated experimental setups by an ion transport system consisting of several focusing, accelerating and mass-separating elements. This article presents the current design and simulations for the ion transport. peerReviewed

tutkimuslaitteetion guideMARAydinfysiikkaion opticslow-energy branch
researchProduct

Branching ratios in theβdecays ofN12andB12

2009

Absolute branching ratios to unbound states in C-12 populated in the beta decays of N-12 and B-12 are reported. Clean sources of N-12 and B-12 were obtained using the isotope separation on-line (ISOL) method. The relative branching ratios to the different populated states were extracted using single-alpha as well as complete kinematics triple-alpha spectra. These two largely independent methods give consistent results. Absolute normalization is achieved via the precisely known absolute branching ratio to the bound 4.44 MeV state in C-12. The extracted branching ratios to the unbound states are a factor of three more precise than previous measurements. Branching ratios in the decay of Na-20 …

Nuclear physicsPhysicsNormalization (statistics)Nuclear and High Energy PhysicsBranching fractionlawDouble beta decayCarbon-12Alpha particleBeta decaySpectral lineIsotope separationlaw.inventionPhysical Review C
researchProduct

Breakup channels forC12triple-αcontinuum states

2009

The triple-alpha-particle breakup of states in the triple-alpha continuum of C-12 has been investigated by way of coincident detection of all three alpha particles of the breakup. The states have been fed in the beta decay of N-12 and B-12, and the alpha particles measured using a setup that covers all of the triple-alpha phase space. Contributions from the breakup through the Be-8(0(+)) ground state as well as other channels-interpreted as breakup through excited energies in Be-8-have been identified. Spins and parities of C-12 triple-alpha continuum states are deduced from the measured phase-space distributions for breakup through Be-8 above the ground state by comparison to a fully symme…

PhysicsNuclear and High Energy PhysicsAngular momentumExcited stateNuclear TheoryContinuum (design consultancy)Carbon-12Alpha particleAtomic physicsNuclear ExperimentSpin (physics)Ground stateBreakupPhysical Review C
researchProduct

A neutron source for IGISOL-JYFLTRAP : Design and characterisation

2017

A white neutron source based on the Be(p, nx) reaction for fission studies at the IGISOL-JYFLTRAP facility has been designed and tested. 30MeV protons impinge on a 5mm thick water-cooled beryllium disc. The source was designed to produce at least 1012 fast neutrons/s on a secondary fission target, in order to reach competitive production rates of fission products far from the valley of stability. The Monte Carlo codes MCNPX and FLUKA were used in the design phase to simulate the neutron energy spectra. Two experiments to characterise the neutron field were performed: the first was carried out at The Svedberg Laboratory in Uppsala (SE), using an Extended-Range Bonner Sphere Spectrometer and …

Bonner spherePhysicsNuclear and High Energy Physics010308 nuclear & particles physicsFissionHadronNuclear Theorychemistry.chemical_element01 natural sciencesNuclear physicsSubatomär fysikchemistry0103 physical sciencesSubatomic PhysicsPhysics::Accelerator PhysicsNeutron sourceNuclear fusionneutron sourcesPhysics::Atomic PhysicsBeryllium010306 general physicsNuclear Experiment
researchProduct

Combined in-beam electron andγ-ray spectroscopy ofHg184,186

2011

By exploiting the SAGE spectrometer a simultaneous measurement of conversion electrons and {gamma} rays emitted in the de-excitation of excited levels in the neutron-deficient nuclei {sup 184,186}Hg was performed. The light Hg isotopes under investigation were produced using the 4n channels of the fusion-evaporation reactions of {sup 40}Ar and {sup 148,150}Sm. The measured K- and L-conversion electron ratios confirmed the stretched E2 nature of several transitions of the yrast bands in {sup 184,186}Hg. Additional information on the E0 component of the 2{sub 2}{sup +}{yields}2{sub 1}{sup +} transition in {sup 186}Hg was obtained.

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsYrastElectron7. Clean energy01 natural sciencesElectron spectroscopy3. Good healthInternal conversionExcited state0103 physical sciencesGamma spectroscopyAtomic physics010306 general physicsSpectroscopyRadioactive decayPhysical Review C
researchProduct

Penning trap for isobaric mass separation at IGISOL

2003

Abstract A cylindrical Penning trap has been built at the ion guide isotope separator facility IGISOL of the University of Jyvaskyla. The main goal of the Penning trap application is to purify low-energy radioactive ion beams. The aim is to make isobarically pure beams. The technical description is presented.

Radioactive ion beamsNuclear and High Energy PhysicsIsotopeChemistrySeparator (oil production)Penning trapMass separationIonNuclear physicsPhysics::Accelerator PhysicsIsobaric processPhysics::Atomic PhysicsIon trapAtomic physicsNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

First Precision Mass Measurements of Refractory Fission Fragments

2005

Atomic masses of 95-100Sr, 98-105Zr, and [corrected] 102-110Mo and have been measured with a precision of 10 keV employing a Penning trap setup at the IGISOL facility. Masses of 104,105Zr and 109,110Mo are measured for the first time. Our improved results indicate significant deviations from the previously published values deduced from beta end point measurements. The most neutron-rich studied isotopes are found to be significantly less bound (1 MeV) compared to the 2003 atomic mass evaluation. A strong correlation between nuclear deformation and the binding energy is observed in the two-neutron separation energy in all studied isotope chains.

PhysicsIsotopeFissionBeta (plasma physics)Binding energyGeneral Physics and AstronomyPhysics::Atomic PhysicsAtomic physicsDeformation (meteorology)Nuclear ExperimentPenning trapMass spectrometryAtomic massPhysical Review Letters
researchProduct

Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer

2018

The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb $ ^{+}$ and 87 Rb $ ^{+}$ ions with well-known mass values show that relative uncertainties $ \Delta m/m \leq 7\cdot 10^{-10}$ are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and …

Nuclear and High Energy PhysicstutkimuslaitteetHadronCyclotronspektrometritdouble penning trap mass spectrometerMass spectrometry01 natural sciencesIonlaw.inventionPhysics::Plasma Physicslaw0103 physical sciencesJYFLTRAPNuclear fusionNuclear Experiment010306 general physicsPhysics010308 nuclear & particles physicssyklotronitPenning trapphase-imagingion-cyclotron-resonance techniqueNeutrinoAtomic physicsydinfysiikkaIon cyclotron resonanceThe European Physical Journal A
researchProduct

First experiment with the NUSTAR/FAIR Decay Total Absorption γ-Ray Spectrometer (DTAS) at the IGISOL IV facility

2015

V. Guadilla et al. ; 4 págs.; 4 figs.; 1 tab.

SOL facilitiesNuclear and High Energy PhysicsAnalytical chemistryβ decay[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Total Absorption γ-Ray Spectrometertotal absorption gamma-ray spectrometer01 natural sciencesNuclear physicsLow energy0103 physical sciences010306 general physicsAbsorption (electromagnetic radiation)Instrumentationbeta-delayed neutron emittersSpectrometerta114010308 nuclear & particles physicsChemistryDetector3. Good healthexotic nucleiβ-Delayed neutron emittersISOL facilitiesbeta decayExotic nuclei
researchProduct

ANDES Measurements for Advanced Reactor Systems

2013

Abstract A significant number of new measurements was undertaken by the ANDES “Measurements for advanced reactor systems” initiative. These new measurements include neutron inelastic scattering from 23 Na, Mo, Zr, and 238 U, neutron capture cross sections of 238 U, 241 Am, neutron induced fission cross sections of 240 Pu, 242 Pu, 241 Am, 243 Am and 245 Cm, and measurements that explore the limits of the surrogate technique. The latter study the feasibility of inferring neutron capture cross sections for Cm isotopes, the neutron-induced fission cross section of 238 Pu and fission yields and fission probabilities through full Z and A identification in inverse kinematics for isotopes of Pu, Am…

Nuclear reactionPhysicsNuclear and High Energy Physicsta114FissionNuclear dataFission product yieldInelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energyNuclear physicsNeutron captureNeutronNuclear ExperimentDelayed neutron
researchProduct

Mass measurements of neutron-deficient nuclides close to A=80 with a Penning trap

2006

The masses of 80,81,82,83Y, 83,84,85,86,88Zr and 85,86,87,88Nb have been measured with a typical precision of 7 keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides. peerReviewed

nukliditnuclides
researchProduct

JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification

2012

In this article a comprehensive description and performance of the double Penning-trap setup JYFLTRAP will be detailed. The setup is designed for atomic mass measurements of both radioactive and stable ions and additionally serves as a very high-resolution mass separator. The setup is coupled to the IGISOL facility at the accelerator laboratory of the University of Jyväskylä. The trap has been online since 2003 and it was shut down in the summer of 2010 for relocation to the upgraded IGISOL facility. Numerous atomic mass and decay energy measurements have been performed using the time-of-flight ion-cyclotron resonance technique. The trap has also been used in several decay spectroscopy expe…

Physicsnuclear spectroscopyNuclear and High Energy Physicsaccelerator-based physicsCyclotronPenning trapMass spectrometrykiihdytinpohjainen fysiikkaAtomic massIonlaw.inventionNuclear physicsydinrakenneDecay energylawnuclear structureydinspektroskopiaNuclear fusionPhysics::Atomic PhysicsSpectroscopyNuclear Experimentydinfysiikka
researchProduct

Confirming band assignments in $^{167}$ytterbium with gamma-gamma-electron triple-coincidence spectroscopy

2019

International audience; Multipolarity measurements are presented for transitions in the deformed odd-mass nucleus$^{167}$ Yb in support of tentative spin assignments and level interpretations based upon the cranked-Nilsson model. Internal-conversion coefficients were measured with the SAGE (Silicon And GErmanium) spectrometer confirming several E2 transition assignments. The array of high-purity germanium detectors enabled the recording of high-multiplicity events from which $\gamma\gamma\gamma$ and $\gamma\gamma e^{-}$ data sets were extracted and the technique of high-fold $\gamma$ -ray gating was demonstrated to cleanly isolate transitions of interest.

PhysicsYtterbiumNuclear and High Energy PhysicsSpectrometerSilicon010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHadronchemistry.chemical_elementGermaniumElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceschemistry0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Atomic physics010306 general physicsSpectroscopySpin (physics)Nuclear Experiment
researchProduct

Accurate Fission Data for Nuclear Safety

2013

The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexi…

PhysicsNuclear and High Energy Physicsta114Neutron emissionXenon-135Nuclear TheoryFOS: Physical sciences7. Clean energyFast fissionNuclear physicsNeutron fluxNeutron cross sectionNeutron sourceNeutronNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentNeutron moderatorNuclear Data Sheets
researchProduct

Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of theZ=104NucleusRf256

2012

The rotational band structure of the $Z=104$ nucleus $^{256}\mathrm{Rf}$ has been observed up to a tentative spin of $20\ensuremath{\hbar}$ using state-of-the-art $\ensuremath{\gamma}$-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-$j$ orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing i…

Physics010308 nuclear & particles physicsNuclear TheoryShell (structure)General Physics and AstronomyMoment of inertia01 natural sciencesmedicine.anatomical_structureAtomic orbitalPairing0103 physical sciencesmedicineAtomic physicsNuclear Experiment010306 general physicsSpin (physics)Electronic band structureNucleusEnergy (signal processing)Physical Review Letters
researchProduct

The science case of the FRS Ion Catcher for FAIR Phase-0

2019

The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection…

ydinreaktiotMR-TOF-MSNuclear Theorymass measurementsddc:530exotic nuclidesNuclear Experimentydinfysiikkanuclear reactionsbeta-delayed neutron emissionemissio (fysiikka)
researchProduct

Characterization of a cylindrical plastic {\beta}-detector with Monte Carlo simulations of optical photons

2017

V. Guadilla et al. -- 5 pags., 8 figs., tab.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhotonTotal absorption spectroscopyoptical photonsTotal absorption spectroscopyMonte Carlo method[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesElectromagnetic radiationMonte Carlo simulationsOptics0103 physical sciencesPlastic scintillators[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]plastic scintillators010306 general physicsAbsorption (electromagnetic radiation)Nuclear ExperimentInstrumentationPhysicsSpectrometerta114010308 nuclear & particles physicsbusiness.industryDetectortotal absorption spectroscopyComputational physicsOptical photonsDynamic Monte Carlo methodbusiness
researchProduct

Direct measurement of the mass difference of As72−Ge72 rules out As72 as a promising β -decay candidate to determine the neutrino mass

2021

We report the first direct determination of the ground-state to ground-state electron-capture $Q$ value for the $^{72}\mathrm{As}$ to $^{72}\mathrm{Ge}$ decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$ value was measured to be 4343.596(75) keV, which is more than a fiftyfold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$ value was found to be 12.4(40) keV (3.1 $\ensuremath{\sigma}$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$ value combined with the level scheme of $^{72}\mathrm{Ge}$ from $\ensurem…

Physics010308 nuclear & particles physicsElectron captureSigmaPenning trapMass spectrometry01 natural sciencesAtomic mass0103 physical sciencesNeutrinoAtomic physics010306 general physicsSpectroscopyElectron neutrinoPhysical Review C
researchProduct

Fission yield measurements at IGISOL

2016

The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure rela…

Nuclear reactionNuclear fission productFission productsIsotopeta114010308 nuclear & particles physicsChemistryFissionPhysicsQC1-999Nuclear TheoryFission product yieldPenning trap01 natural sciencesNuclear physicsSubatomär fysik0103 physical sciencesSubatomic PhysicsPhysics::Atomic and Molecular ClustersNeutronfission product yieldIGISOL010306 general physicsNuclear Experiment
researchProduct

First observation of excited states of 173Hg

2012

The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of the decay of excited states via γ radiation are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighboring neutron-deficient Hg nuclei. In addition to the γ -ray spectroscopy, the α decay of this nucleus has been measured yielding superior precision to earlier measurements. peerReviewed

Nuclear TheoryExperimental nuclear physicsNuclear ExperimentKokeellinen ydinfysiikka
researchProduct

Trap-assisted separation of nuclear states for gamma-ray spectroscopy: the example of100Nb

2011

Low-lying levels in 100Mo are known to be populated by beta decay from both the ground and isomeric states in 100Nb. The small energy difference (~3 ppm) between the two parent states and the similarity of their half-lives make it difficult to distinguish experimentally between the two decay paths. A new technique for separating different states of nuclei has recently been developed in a series of experiments at the IGISOL facility, using the JYFLTRAP installation, at the University of Jyvaskyla where mass resolution ~2 ppm was achieved in mass measurements and in the production of 133mXe. This paper reports on the extension of this technique to allow the separate study of the gamma-ray dec…

PhysicsNuclear physicsNuclear and High Energy PhysicsDecay scheme[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]010308 nuclear & particles physics0103 physical sciencesGamma spectroscopyTrap (plumbing)Atomic physics010306 general physics01 natural sciencesBeta decayJournal of Physics G: Nuclear and Particle Physics
researchProduct

JYFLTRAP: a cylindrical Penning trap for isobaric beam purification at IGISOL

2004

Abstract A Penning trap has been installed for isobaric beam purification at the IGISOL-facility at the University of Jyvaskyla. In this paper, the technical details of this new device together with results of the first tests are presented. The mass resolving power, depending on the excitation parameters and the ion species, can be as high as 145 000 and the total transmission has been determined to be 17%. In addition, it is shown that with this experimental setup it is possible to measure atomic masses up to A=120 with accuracies of approximately 50 keV .

PhysicsNuclear and High Energy PhysicsTotal transmissionIsobaric processNew deviceAtomic physicsNuclear ExperimentPenning trapInstrumentationExcitationBeam (structure)Atomic massIonNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Isomeric fission yield ratios for odd-mass Cd and In isotopes using the Phase-Imaging Ion-Cyclotron-Resonance technique

2018

Isomeric yield ratios for the odd-$A$ isotopes of $^{119-127}$Cd and $^{119-127}$In from 25-MeV proton-induced fission on natural uranium have been measured at the JYFLTRAP double Penning trap, by employing the Phase-Imaging Ion-Cyclotron-Resonance technique. With the significantly improved mass resolution of this novel method isomeric states separated by 140 keV from the ground state, and with half-lives of the order of 500 ms, could be resolved. This opens the door for obtaining new information on low-lying isomers, of importance for nuclear structure, fission and astrophysics. In the present work the experimental isomeric yield ratios are used for the estimation of the root-mean-square a…

Nuclear TheoryAnalytical chemistryFOS: Physical sciencesFission product yield01 natural sciences7. Clean energySubatomär fysikydinreaktiotPhysics::Plasma Physics0103 physical sciencesSubatomic PhysicsPhysics::Atomic and Molecular ClustersfissionNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Experimentnuclear reactionsPhysicsIsotopeta114010308 nuclear & particles physics3. Good healthfissioPhase imagingisomer decaysydinfysiikkaIon cyclotron resonance
researchProduct

An ion guide for the production of a low energy ion beam of daughter products of α-emitters

2006

A new ion guide has been modeled and tested for the production of a low energy ($\approx$ 40 kV) ion beam of daughter products of alpha-emitting isotopes. The guide is designed to evacuate daughter recoils originating from the $\alpha$-decay of a $^{233}$U source. The source is electroplated onto stainless steel strips and mounted along the inner walls of an ion guide chamber. A combination of electric fields and helium gas flow transport the ions through an exit hole for injection into a mass separator. Ion guide efficiencies for the extraction of $^{229}$Th$^{+}$ (0.06%), $^{221}$Fr$^{+}$ (6%), and $^{217}$At$^{+}$ (6%) beams have been measured. A detailed study of the electric field and …

Nuclear and High Energy PhysicsIon beam010308 nuclear & particles physicsChemistrySeparator (oil production)Ion gun01 natural sciences7. Clean energy3. Good healthIonIon beam depositionElectric field0103 physical sciencesAlpha decayAtomic physics010306 general physicsElectroplatingNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Large Impact of the Decay of Niobium Isomers on the Reactor ν¯e Summation Calculations

2019

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data ob…

Semileptonic decayPhysicsIsotopeNiobiumGeneral Physics and Astronomychemistry.chemical_elementPenning trap7. Clean energy01 natural sciencesBeta decayIonNuclear physicschemistry13. Climate actionBeta (plasma physics)0103 physical sciencesNuclear Experiment010306 general physicsSpectroscopyPhysical Review Letters
researchProduct

Status and development of the MARA low-energy branch

2018

The MARA Low-Energy Branch is under development at the Accelerator Laboratory of the University of Jyvaskylä. The facility will be employed for laser ionisation and spectroscopy studies and for mass measurements of nuclei close to the proton drip line. This article presents an updated status of the ongoing development of the different parts of this facility, including the buffer gas cell, the ion transport system, the laser system and the detector stations. peerReviewed

massaspektrometriaion transport systemta114Nuclear engineeringNuclear TheoryBuffer gasDetectortutkimuslaitteetbuffer gas cellLaserlaw.inventionProton (rocket family)Low energylawlow-energyPhysics::Accelerator PhysicsEnvironmental scienceNuclear Experimentydinfysiikkadetector stationslaser system
researchProduct

Penning trap at IGISOL

2002

The IGISOL facility [1] at the Department of Physics of the University of Jyvaskyla (JYFL) is delivering radioactive beams of short-lived exotic nuclei, in particular the neutron-rich isotopes from fission reaction. These nuclei are studied with the nuclear and collinear laser spectroscopy methods. In order to obtain a meaningful increase, in comparison to a standard level, of precision and sensitivity of such studies an improvement of the radioactive beam quality is necessary. This improvement will be achieved due to a radioactive beam handling which consists of three steps: beam cooling, bunching and (isobaric) purification. The latter means a possibility of obtaining a pure monoisotopic …

PhysicsNuclear and High Energy PhysicsIsotopeNuclear TheoryPenning trapIonNuclear physicsNuclear fissionPhysics::Accelerator PhysicsIsobaric processNuclear Physics - ExperimentMonoisotopic massAtomic physicsNuclear ExperimentSpectroscopyBeam (structure)
researchProduct

Measurement of the 2+→0+ ground-state transition in the β decay of F20

2019

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

Physics010308 nuclear & particles physicsBranching fractionDegenerate energy levelsDetectorchemistry.chemical_element01 natural sciences7. Clean energychemistry0103 physical sciencesHigh Energy Physics::ExperimentAtomic physics010306 general physicsGround stateCarbonStellar evolutionBeam (structure)FOIL methodPhysical Review C
researchProduct

Total absorption study of theβdecay of102,104,105Tc

2013

The $\ensuremath{\beta}$-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely ${}^{102,104,105}$Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations.

Nuclear physicsPhysicsNuclear and High Energy PhysicsTotal absorption spectroscopyBeta (plasma physics)Double beta decayIsobaric processAbsorption (logic)Decay heatAtomic physicsPenning trapBeta decayPhysical Review C
researchProduct

Isomeric state of $^{80}$Y and its role in the astrophysical rp-process

2001

5 pages, 7 figures.-- PACS nrs: 21.10.Tg; 23.20.Nx; 27.50.+e.

59 ≤ A ≤ 89 [[PACS] Properties of specific nuclei listed by mass ranges]PhysicsNuclear and High Energy Physics[PACS] Properties of specific nuclei listed by mass ranges: 59 ≤ A ≤ 89Proton[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]010308 nuclear & particles physicsHadronElectron[PACS] Internal conversion and extranuclear effects (including Auger electrons and internal bremsstrahlung)rp-processNuclear isomer[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsExcited state0103 physical sciences[PACS] Lifetimes widthsAtomic physics010306 general physicsInternal conversion coefficientExcitation
researchProduct

TAGS measurements of $^{100}$Nb ground and isomeric states and $^{140}$Cs for neutrino physics with the new DTAS detector

2016

V. Guadilla et al. -- 4 pags., 6 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

PhysicsFission productsta114Spectrometer010308 nuclear & particles physicsPhysicsQC1-999Detector[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences3. Good healthNuclear physicsnuclear masses0103 physical sciencesstructuredecay data measurementsNeutrino010306 general physicsSpectroscopyAbsorption (electromagnetic radiation)
researchProduct

QEC value of the superallowed β emitter 42Sc

2017

The QEC value of the superallowed β+ emitter Sc42 has been measured with the JYFLTRAP Penning-trap mass spectrometer at the University of Jyväskylä to be 6426.350(53) keV. This result is at least a factor of four more precise than all previous measurements, which were also inconsistent with one another. As a byproduct we determine the excitation energy of the 7+ isomeric state in Sc42 to be 616.762(46) keV, which deviates by 8σ from the previous measurement. peerReviewed

Ion Traps (Instrumentation)astrofysiikkasuperallowed emittersAntiprotonsAtomic Weightsydinfysiikkaatomipainot
researchProduct

QEC value of the superallowed β emitter Sc42

2017

Precise measurements of superallowed ${0}^{+}\ensuremath{\rightarrow}{0}^{+}$ $\ensuremath{\beta}$ decay presently provide the most precise value for the weak mixing amplitude ${V}_{u\phantom{\rule{0}{0ex}}d}$. As the largest element of the CKM matrix, ${V}_{u\phantom{\rule{0}{0ex}}d}$ is a critical piece of the Standard Model of the electroweak interaction. The new, precise Penning-trap mass measurement of the decay energy for the superallowed transition in ${}^{42}$Sc opens the door for a much more precise $f\phantom{\rule{0}{0ex}}t$ value determination if its half-life can be measured more precisely as well.

PhysicsParticle physics010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixElectroweak interactionValue (computer science)01 natural sciencesMass measurementStandard ModelAmplitudeDecay energy0103 physical sciences010306 general physicsCommon emitterPhysical Review C
researchProduct

Characterizing the atomic mass surface beyond the proton drip line via {\alpha}-decay measurements of the {\pi}s1/2 ground state of 165Re and the {\p…

2012

The α-decay chains originating from the πs1/2 and πh11/2 states in 173Au have been investigated following fusion-evaporation reactions. Four generations of α radioactivities have been correlated with 173Aum leading to a measurement of the α decay of 161Tam. It has been found that the known α decay of 161Ta, which was previously associated with the decay of the ground state, is in fact the decay of an isomeric state. This work also reports on the first observation of prompt γ rays feeding the ground state of 173Au. This prompt γ radiation was used to aid the study of the α-decay chain originating from the πs1/2 state in 173Au. Three generations of α decays have been correlated with this stat…

Experimental nuclear physicsKokeellinen ydinfysiikka
researchProduct

Beta decay of neutron-rich 118Ag and 120Ag isotopes

2003

b decays of on-line mass-separated neutron-rich 118Ag and 120Ag isotopes have been studied by using b-g and g-g coincidence spectroscopy. Extended decay schemes to the 118,120Cd daughter nuclei have been constructed. The three-phonon quintuplet in 118Cd is completed by including a new level at 2023.0 keV, which is tentatively assigned the spin and parity of 24 1 . The intruder band in 118Cd is proposed up to the 41 level at 2322.4 keV. The measured b-decay half-life for the high-spin isomer of 120Ag is 0.4060.03 s. Candidates for the three-phonon states, as well as the lowest members of the intruder band in 120Cd, are also presented. These data support the coexistence of quadrupole anharmon…

nuclear physicsydinfysiikka
researchProduct

Wien filter for cooled low-energy radioactive ion beams

2002

A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2→q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68<A<78 nuclei have been deduced.

PhysicsNuclear and High Energy PhysicsWien filterIsotopeFissionElectron captureIon sourceIonIon beam depositionPhysics::Plasma PhysicsQuadrupoleAtomic physicsNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Disentangling decaying isomers and searching for signatures of collective excitations in β decay

2019

6 pags., 3 figs., 1 tab. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK

Neutron-rich nucleiHistoryIsotope-separator-on-lineGround statePenning trapspektroskopiaBeta decay01 natural sciencesEducationNuclear physics0103 physical sciencesGamma-ray spectroscopy010306 general physicsNuclear ExperimentPhysicsPygmy dipole resonances010308 nuclear & particles physicsGamma rays[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthComputer Science ApplicationsQuasiparticleIsomeric stateFísica nuclearydinfysiikkaGamma ray spectrometersCollective excitations
researchProduct

Lifetime measurement of the first excited2+state in108Te

2011

The lifetime of the first excited 2(+) state in the neutron deficient nuclide (108)Te has been measured for the first time, using a combined recoil decay tagging and recoil distance Doppler shift t ...

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear TheorySHELL modelState (functional analysis)01 natural sciencesNuclear physicssymbols.namesakeRecoilExcited state0103 physical sciencessymbolsNeutronPhysics::Atomic PhysicsNuclideAtomic physicsNuclear Experiment010306 general physicsDoppler effectPhysical Review C
researchProduct

Study of Intermediate-spin States of $^{98}$Y

2015

The nuclear structure of the odd–odd nucleus 98Y has been re-investigated by observing prompt γ rays emitted following the proton-induced fission of a 238U target, using the JUROGAM-II multidetector array. New highspin decays have been observed and placed in the level schemes using triple coincidences. The experimental level energies and γ-decay patterns are compared to GICM and QPRM calculations, assuming that this neutronrich N = 59 isotone is spherical at low energies and prolate deformed at intermediate spins. Web of Science 47 3 916 911

Physicsgamma decayta114Spin statesSpins[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FissionIsotoneNuclear TheoryNuclear structureGeneral Physics and AstronomyProlate spheroidspin states7. Clean energyNuclear physicsyttriummedicine.anatomical_structurenuclear structuremedicineAtomic physicsNuclear ExperimentNucleus
researchProduct

b-decay of 116Agm and the vibrational structure of 116Cd

2001

The structure of near neutron midshell 116 Cd has been investigated via β decay of 116 Ag m by β-γ and γ-γ coincidence spectroscopy. The 116 Ag m activity was produced by symmetric fission of natural uranium induced by 25 MeV protons. The ion guide technique has been employed to produce online mass separated sources. The decay scheme of 116 Ag m has been considerably extended by adding 19 new excited states of 116 Cd . The newly identified 116 Cd state at 1869.7 keV, along with other four levels near 2 MeV, are interpreted as forming the complete three-phonon quintuplet. The vibrational structure of 116 Cd is discussed in the context of an anharmonic vibrator. peerReviewed

nucleistructureneutron midshell
researchProduct