6533b86dfe1ef96bd12c93cd

RESEARCH PRODUCT

Direct measurement of the mass difference of As72−Ge72 rules out As72 as a promising β -decay candidate to determine the neutrino mass

J. KotilaJ. KotilaS. GeldhofÁ. KoszorúsDmitrii NesterenkoJouni SuhonenAri JokinenJoel KostensaloR. P. De GrooteV. VirtanenA. P. WeaverA. RaggioSami Rinta-antilaA. ZadvornayaIain MooreM. HukkanenM. HukkanenAnu KankainenO. BeliuskinaW. GinsA. De RoubinZ. GeTommi Eronen

subject

Physics010308 nuclear & particles physicsElectron captureSigmaPenning trapMass spectrometry01 natural sciencesAtomic mass0103 physical sciencesNeutrinoAtomic physics010306 general physicsSpectroscopyElectron neutrino

description

We report the first direct determination of the ground-state to ground-state electron-capture $Q$ value for the $^{72}\mathrm{As}$ to $^{72}\mathrm{Ge}$ decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$ value was measured to be 4343.596(75) keV, which is more than a fiftyfold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$ value was found to be 12.4(40) keV (3.1 $\ensuremath{\sigma}$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$ value combined with the level scheme of $^{72}\mathrm{Ge}$ from $\ensuremath{\gamma}$-ray spectroscopy, we confirm that the five potential ultralow $Q$-value ${\ensuremath{\beta}}^{+}$ decay or electron capture transitions are energetically forbidden, thus precluding all the transitions as possible candidates for the electron neutrino mass determination. However, the discovery of small negative $Q$ values opens up the possibility to use $^{72}\mathrm{As}$ for the study of virtual $\ensuremath{\beta}\text{\ensuremath{-}}\ensuremath{\gamma}$ transitions.

https://doi.org/10.1103/physrevc.103.065502